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Abstract. This paper studies how similarity joins can be implemented in the MapReduce paradigm.
Similarity joins refer to the problem of finding similar records. We describe an approach on how
to efficiently implement similarity joins in the MapReduce paradigm and apply this approach to
the problem of finding different spellings of a person’s name in a database of authors of scientific
papers. Our implementation tokenizes the author name strings into n-grams and uses the Jaccard
index set similarity measure. We show that we receive the best results for 3 and 4-grams and
that the number of comparisons needed is lower by a factor of at least hundred than in the naive
approach of comparing each record with all others.

1 Introduction

Detection of similar records or similarity joining is a problem that occurs in many applications
such as plagiarism detection, recommender systems or mining of social networking data. With
the continuous increase of data those type of applications are processing, this process becomes
a big computational burden. Often such tasks can become too expensive to be handled by a
single computer. This has lead to an increased interest in technologies for parallel, distributed
data processing on computer clusters such as MapReduce (see Dean and Ghemawat [3]).

The join operator is algebraically defined as a Cartesian product followed by the selection
operator that specifies the join condition. Joins have been thoroughly studied and efficient
algorithms such as the sort-merge join or hash join exist. They can efficiently reduce the run-
time, since they do not require the Cartesian product to be explicitly constructed. This is
achieved by exploiting sorting and hashing properties respectively. These algorithms work for
join conditions such as equality. However, if the join condition is a similarity threshold, sort-
merge or hash join algorithms cannot be applied. This is due to the fact, that no sorting exists
where similar records always appear in order and similar records do not map to the same hash.
Therefore, other means to efficiently implement similarity joins are required.

In this project, we have implemented a MapReduce-based algorithm for set-similarity joins
on strings. For testing we use a database of approximately 250’000 author names obtained from
Kaggle Inc [4]. The database contains noise because “there are many authors who publish under
several variations of their own name”, typos, different orderings of first- and last names etc. The
goal is to detect different writings of the same person’s name. Formally, this is self joining the
author relation A on the author’s name attribute A.n, given a set-similarity function sim(), a
similarity threshold τ and a tokenisation method tokenise() which transforms strings into token
sets such that A ▷◁sim(tokenise(A.n),tokenise(A’.n))≥τ A.

2 Method

Section 2.1 discusses prefix filter, a principle used to enable fast implementations of set-similarity
joins. Section 2.2 introduces the MapReduce-based algorithm we have implemented. Finally,
Section 2.3 discusses how the algorithm introduced can be used on the author database.



2.1 Prefix Filter

Since building the Cartesian product of all records and subsequently applying a selection op-
erator based on a set-similarity function sim() to perform a join operation is computationally
expensive, filters are usually used to decrease the number of candidate pairs to which the se-
lection operator is applied. One commonly used filter is the prefix filter (see Chaudhuri, Ganti,
and Kaushik [2]). The intuition behind the prefix filter is, that the similarity between two sets
cannot reach a given threshold if a specific subset (called prefix) of the two sets has an empty
intersection (see Augsten and Bohlen [1]).

Definition 1. Given an ordering O of the universe U from which all set elements are drawn,
the k-prefix of any set S is, the subset of S consisting of the first k elements of S as per the
ordering O.

Example 1. The 3-prefix of the set {˝,f,7,a,F,l} given the ordering 7 < l < a <

˝ <f <F is {7,l,a}.

Theorem 1. Prefix Filtering Principle. Given two sets A and B, and an ordering O on
the elements of both sets, and a threshold τ , if sim(A,B) ≥ τ , then the (|A| − α+ 1)-prefix Ap

of A and the (|B| − α + 1)-prefix Bp of B with respect to the given order share at least one
element, Ap ∩Bp ̸= ∅. The constant α is dependant on the particular similarity function sim()
and threshold τ used.

Based on the definition and theorem above, an efficient similarity join algorithm can be
implemented by applying the selection operator only on records having at least one prefix token
in common. Since sharing a prefix token is a necessary, but not sufficient condition for similar
records, the filter does not produce false positives. To produce the least amount of candidate
pairs, the increasing token-frequency order is commonly used as ordering O.

2.2 MapReduce Algorithm

The MapReduce-based algorithm presented by Vernica, Carey, and Li [6] consists of three stages,
out of which some stages consists of several map-reduce phases.

Stage 1 This stage determines the increasing token-frequency order over all the input records.
This is achieved by two map-reduce phases. The first one tokenizes the records using the
tokenise() function and counts the occurrence of all tokens in all records. This phase is es-
sentially equal to the famous word frequency MapReduce program (see Dean and Ghemawat
[3]). The second phase sorts the tokens according to their frequency.

Stage 2 This stage, called the kernel, performs the prefix filtering to form all candidate pairs
and afterwards does similarity checking on them. This stage consists of a single map-reduce
phase.

The mapper computes the prefix Ap as per the token order computed by the previous stage
for every record A. Every prefix token of the record is used as a key. Therefore, (|A| − α + 1)
(key, value)-pairs are emitted per record. Consecutively, the values get grouped by prefix
tokens during the MapReduce sorting step, therefore all the values passed to a reduce call are
potentially similar records, since they share at least one common token in their prefixes. The
reducer calculates the similarity using the function sim() for every candidate pair and emits the
pair if the similarity is above the threshold τ .
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Stage 3 Since two records A and B can possibly share more than one token in their prefixes
Ap and Bp, the output from the previous stage can contain duplicates. In this stage they are
removed from the output. This stage again consist of a single map-reduce phase.

2.3 Application to Author Names

When applying the method described to the author names problem, a number of choices have
to be made. For example, it might be necessary to perform data pre-processing. As the author
names database contains a lot of noise, any non-alphabetical characters were removed in the
tokenization process. Furthermore, the author names were in inconsistent capitalization and
therefore the case is ignored in further steps.

Another aspect to be decided is how to perform the tokenization itself. The processed strings
can be split into words. In the case of author names this would mean splitting the author name
into first, middle and last name. However, this would have the disadvantage of making it more
likely to not detect misspelt names since even small differences in strings result in high distances
between them. For this reason, we chose to use n-grams. Because the first, middle and last name
of the author can be written in different orders and possibly be shortened or left out, the author
names were first tokenized into words before these were further split into n-grams. This means
that n-grams do not span across words and do not take the location of word separators into
consideration. The size of the n-gram has a large influence on the number of comparisons and
results as well as the accuracy of the results. This will be discussed further in section 3.

A number of options are available for the set-similarity function. The most common choice
to measure the similarity between two sets A and B is the Jaccard index J(A,B) = |A∩B|

|A∪B| .
This is the similarity function used by Vernica, Carey, and Li [6] and was also chosen for this
problem. For the prefix filter the Jaccard index requires an α of ⌈τ |X|⌉, where X is either the
set A or B and where τ is a suitable similarity threshold. To find this threshold for the Jaccard
index, different values were evaluated in terms of quality of the results and performance.

3 Results

When running the algorithm with different similarity thresholds τ , we can observe that both
the number of comparisons over name pairs and number of resulting name matches decrease
with a larger τ . It can be observed in Figure 1 that the decrease is steeper for the number of
comparisons while the number of retrieved results stays relatively similar.

The algorithm was run with both 3-grams and 4-grams. In general, the choice of n-gram size
is a tradeoff between computation time and quality of results. As can be seen, the number of
comparisons is significantly higher for 3-grams. This is the reason why using 2-grams would be
computationally infeasible. Unlike the number of comparisons, the number of retrieved results
increases with higher n-gram. However, the quality of results is lower which makes higher n-
grams such as 5-grams unattractive to use.

The lower quality of results can be observed in the precision and recall lines for the results of
the author ”Edsger Wybe Dijkstra”. While the recall is the same for 3 and 4-grams, the precision
is lower for 4-grams, indicating a lower percentage of correct matches in the result. This shows
that higher n-grams do not retrieve more accurate results even though the number of results
increases.

The number of comparisons also shows the advantage of the presented approach over the
naive solution of comparing every author name with all others. For the given dataset of about
n = 250, 000 author names, the number of comparisons does not exceed 0.2% of the n(n−1)

2
comparisons needed in the naive approach.
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(a) Number of comparisons over name pairs and
number of resulting name matches over different
similarity thresholds τ .
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(b) Precision and Recall for the author ’Edsger
Wybe Dijkstra’ for different similarity thresholds
τ .

Fig. 1: Relationship of the similarity threshold τ with different performance measures.

4 Issues and Further Work

Generally, joining two very large data sets together does not fit into the MapReduce paradigm
gracefully, since MapReduce is very good at processing large data sets by looking at every record
in isolation (Miner and Shook [5]). This is particularly problematic in stage 2 of the method
implemented, where the cross product of all records sharing at least one prefix token is built.
Although, this cross product will in most cases be significantly smaller than the cross product
of the complete relation, it still might not fit into memory. In that case, sub-partitioning the
data into blocks that fit in memory is necessary (see Vernica, Carey, and Li [6]).

One issue when tokenizing author names into 3 or 4-grams work best is that names which
are shorter than 3 or 4 letters, respectively, are being discarded in the tokenization process. This
can, in particular, be a problem with Asian names as second and last names are more often
shorter than this lower bound. For example, the name “Adeline Yen Mah” will be tokenized into
{Adel, deli, elin, line}. We therefore suggest an alternative tokenization which would instead
produce {Adel, deli, elin, line, Yen, Mah} for further analysis.

5 Summary

In this project the efficient implementation of set similarity joins was studied using the MapRe-
duce paradigm. A three-stage method proposed by Vernica, Carey, and Li [6] was adapted to
the problem of detecting different writings of the same author’s name and implemented using
the Hadoop framework. We discussed and motivated the choices we took to apply the given
method to this problem.

In an experimental evaluation, we analyzed the impact of the tokenization function and
similarity threshold τ on the computational burden and quality of the result. We conclude that
using higher order n-grams reduces the computational effort but negatively impacts the quality.
Compared to the naive O(n2) approach to similarity joining, our approach reduces the number
of comparisons needed by a factor of at least hundred.
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