Visualizing Wikipedia using a Graph Database

Robin Chowdhury robinch@kth.se
Ludvig Hagberg ludvigha®@kth.se
Jacob Sievers jsievers@kth.se
Hanna Nyblom hnyblom@kth.se

May 29, 2015

Abstract

In this paper a way to visualize large amounts of linked data using
graph databases and clustering algorithms is presented. The example uses
wikipedia as a source of data and Fruchterman-Reingold and ForceAt-
las2 as layout algorithms to visually cluster the data provided by a neo4j
database. The most computationally critical part of the visualization were
the layout algorithms themselves as neo4j proved to give enough perfor-
mance even for very large graphs.

1 Introduction

Wikipedia [2] is a great source of information but it’s hard to get an overview
of how that data is interrelated. Wikipedia provides summary articles and lists
on large subjects, but those are created and edited by humans, which does not
give a true picture of how the data is related and which articles that actually
are most important. To see how the articles are actually related, we visualize
the data as a graph so that humans easily could get an overview of the relations
between wiki articles. This is done using a graph database [1,4] as a source for
the information and layout algorithms for the visualization itself.

2 Method

2.1 The database

Neodj [5] is used to store the link info. Neo4j is a highly performant, scalable
graph database. [4] It provides a query language called Cypher [6] that is used
to populate and query the database.

2.2 Populating the Graph Database

To populate the database, a dump [7] from dbpedia [8] was downloaded. The
dump contained only the internal links from the Swedish Wikipedia due to
it being of smaller size than the English. The dump was parsed through a
parser written in node.js [3] and populated the database using seraph [9] (neo4;
database bindings for node.js).



Every link from an article to another did two things:

1. Added one or both of the two articles as vertices if they don’t already
exist,.

2. Added an edge between the two vertices if there isn’t already one.

This is accomplished with several MERGE queries in cypher, the SQL-like
query language used by neodj. Instead of using the internal IDs provided by
neodj to connect the graph the links themselves was used as IDs since these were
unique.

2.3 Visualization

To retrieve data from the database a node.js server is used, using express.js [10]
and seraph. Express provides a framework for creating web-servers and seraph is
an API for querying graph databases. The server is used to query the database
and format the JSON [11] response for easier display in the browser. To get data
from the server a simple get request is used with different parameters depending
on the queries. The data is sent in JSON format in a long list for easy display.

The front end is built with javascript using the linkurious.js [12] graph visu-
alisation toolkit. The JSON is retrieved with a get call and then it is inputted
into the linkurious API. Linkurious is using Sigma.js [13] to draw all the nodes
and edges and format them in a visually appealing way.

The way that the nodes were drawn was a product of experimentation, in
the beginning the nodes were drawn only with random x and y coordinates but
that resulted in a big blob, increasing the interval did not help, this probably
have to do with linkurious camera rendering using a form of relative sizes and
distances. To get an even spread of the nodes an algorithm was used to draw
the edges in a somewhat random grid by using random positioning and after
a certain interval increasing x and/or y a fixed amount. An even spread was
preferred so that a human easily could see how big the graph was and how it
was connected.

The features that were implemented were a visualization of the shortest
path between two nodes, a filter that could be applied to only show nodes
within a certain interval of degrees, an option to hide edges, an option to resize
edges relative to their degree and two clustering algorithms. The shortest path
algorithm was constructed with a built in function in neo4j, that was parsed
in the server and sent to the front end. The degree filter was constructed with
linkurious filtering API, which was also used to hide edges. This was done in
the front end and was not using the database. To resize the edges we used a
loop that looped through all the edges and set the size of each edge to degree
plus one (so no edge would have size zero), this was implemented so that you
could easily see how connected a node was.

The two clustering algorithms that were used were ForceAtlas2 [14] and
Fruchterman-Reingold [15]. Both of them had the same basic principle that
nodes repel other nodes and edges attract the two connected nodes [14]. The
main difference was that ForceAtlas2 was feasible to use up to 200’000 nodes
while Fruchterman-Reingold only could handle around 200 [14]. Only around
200 nodes were used in the tests so both worked fine but one test of 20’000 nodes
was made and ForceAtlas2 could easily handle it, but the code and options in



Figure 1: Example of FR. Figure 2: Example of FA.

linkurious were not optimised enough to render the graph without heavy lag.
This shows that as long as you got the database populated with the data you
want to visualise the frontend can scale well as long as the hardware can handle
it. One thing to consider in the case of these clustering algorithms is that the
initial positioning of the nodes matter for the end result, so the algorithm that
was used for the initial visualization had an impact.

2.4 Results and Discussion

When analyzing the graphs after applying the clustering algorithms it was ob-
servable that ForceAtlas2 had a smaller spread of the nodes than Fruchterman-
Reingold making it harder to get a good estimation of a single cluster as they
were stacked on top of each other. This might have been helped by changing
the options of ForceAtlas2 but due to lack of time only options provided by the
official example code was used. This was less apparent if the nodes relative to
their edges was resized giving less probability to draw over each other as a lot
of the nodes where of degree one. Fruchterman-Reingold was the algorithm we
thought gave the best visual representation of the graph as it did not have a lot
of overlapping nodes and an even spread giving a clear idea of the cluster size
and relative size.

The data was connected in such a way that there were a few big nodes
with high degree connection to several nodes with only one degree. This we
believe was due to the dataset we used, because the first article will create
nodes for every link it has without doing a search from that link, so to get a
real visualization we would need to use the entire Wikipedia database.

2.5 Conclusion

We believe we were successful in visualizing a part of Wikipedia. After applying
the clustering algorithms, especially Fruchterman-Reingold, it was very clear
how the sample dataset was structured and you could easily hover over a node
to see what article it was referring to and a click would take you to said article.
We also think that with some tweaks this project could be scaled to an arbitrarily
large wiki with only the limitation of computational power and memory.



Figure 3: Example with no cluster-
ing applied.

References

1]

B.Shao, H.-Wang and Y.Xiao ”Managing and Mining Large Graphs: Sys-
tems and Implementations” Proceeding. SIGMOD ’12 Proceedings of the
2012 ACM SIGMOD International Conference on Management of Data.Pages
589-592

"Wikipedia” - https://www.wikipedia.org/

"Node.js” - https://nodejs.org/

”Graph Database” - http://neodj.com/developer/graph-database/
"Neodj” - http://neodj.com/

”Cypher” - http://neodj.com/developer/cypher/

”Swedish wiki dump” - http://downloads.dbpedia.org/3.9/sv/
”dbpedia” - http://wiki.dbpedia.org/

”Seraph.js” - https://github.com/brikteknologier /seraph

[10] ”Express.js” - http://expressjs.com/

[11] 7JSON” - http://json.org/

[12] ”linkurious.js” - https://github.com/Linkurious/linkurious.js

[13] ”Sigma.js” - http://sigmajs.org/

[14] ForceAtlas2, a Continuous Graph Layout Algorithm for Handy Network

Visualization Designed for the Gephi Software by Mathieu Jacomy, Tommaso
Venturini, Sebastien Heymann and Mathieu Bastian

[15] Graph Drawing by Force-directed Placement by Thomas M. J. Fruchterman

and Edward M. Reingold



