
The Wiki-Smasher, a Patty based fact replacer.

Alexander Tingström, Patrik Wallin, Robert Vegh, and Daniel Kruczek

Kungliga Tekniska Högskolan, Stockholm 10044, Sweden
atin@kth.se patwal@kth.se rvegh@kth.se kruczek@kth.se

Abstract. In this paper a program capable of finding facts in Wikipedia
and replacing them with random facts of the same type is presented. The
program utilized the syntactically-typed relational database PATTY to
find patterns between arguments and to replace the second argument,
thus changing the factual content. This program had mixed success rates
with facts sometimes being exchanged with nonsensical sentences. On
analysis of the data it was determined that grammatical heuristics and
improved sentence isolation could be introduced to increase the quality
of the data even though limitations in PATTY disallow perfect sentence
replacement.

Keywords: PATTY, Natural Language Processing, Wikipedia, Databases,
AI

1 An introduction to PATTY

The database used to locate facts for replacement and the corresponding new
fact was generated by a system called PATTY, which constructed its relational
database from text material taken from the whole of Wikipedia (June 21st, 2011).
The idea behind PATTY is to automatically extract relational information from
natural language text. However, there are many ways to express the same thing
in natural language so the relations must be generalized and organized with care.

PATTY works with an external knowledge base (YAGO or Freebase) and pro-
cesses a natural language text in four main steps to obtain a relational database.

Fig. 1. A brief overview of the four-step process utilized by PATTY. Picture taken
from [1].



1.1 Pattern Extraction

The first step is to extract patterns from the text corpus. A pattern is a string
that connects a pair of entities in a sentence. The first step is to extract such
patterns from the text, this is done using the Stanford Parser. However, only
sentences with an actual pair of entities are of interest, so only sentences with at
least two entities are emitted. This process yields basic patterns to work with.

1.2 SOL Pattern Transformation

The next step is to turn these basic patterns into SOL (Syntactic, Ontological,
Lexical) patterns. These SOL-patterns are abstractions of the basic text pat-
terns and contain words, POS-tags (part-of-speech), wildcards and ontological
types. the POS-tags stands for a word of a specific part-of-speech class, such
as verb, noun, etc. An ontological type is a semantic class name, for instance
<Politician>. These ontological types are provided by the external knowledge
base.
These SOL-patterns are generated by looking at N-grams of the text patterns,
processing the more frequent ones and giving them type signatures via the
external knowledge base. As an example, a SOL-pattern could look like this:
<person>’s [adj] voice in * <song>

1.3 Pattern Generalization

The third step is to generalize these patterns further. This can be done in many
ways, as an example words can be replaced by POS-tags, more wildcards can
be introduced or an ontological type can be replaced by a more general type
(<singer> can become <performer>). To do this, N-grams are utilized once
more, where the relatively infrequent N-grams get replaced by POS-tags or types.

1.4 Subsumption and Synonym Mining

The last step is to arrange these SOL-patterns into sets of synonym expressions
with a hierarchy tree. The notion of synonym sets are determined via support
sets. A support set is all the pairs of entities that occur with a given pattern, thus
a way to define synonym patterns is to look at their support sets and make them
synonyms if their support sets are equal. Lastly, some patterns are more general
than others, for example <artist> sang <song> is more general than <artist>
covered <song>. This hierarchy is built by looking at intersections in the support
sets. If one pattern has a support set that is a subset of another patterns support
set it will be under that pattern in the hierarchy. The information is now ready
to be inserted into a database where relational queries can be made.

2 The Wiki-Smasher

The Wiki-Smasher is implemented using a 4 module system described below. It
uses the Stanford Part-Of-Speech tagger [2], Python and SQLite.



Module 1: POS-Tagger

In this module the Stanford POS-tagger [2] is used in order to find all nouns in
the given corpus, as all PATTY arguments are nouns. The nouns are indexed
and put into a list for faster processing.

Module 2: Patty-Translator

In the second module, with the indexed noun list as input, the nouns are matched
to the PATTY arguments. At first there is a preprocessing step. For each noun
that is followed directly by another noun, it and the following noun are queried
to the database to determine whether or not they match an argument. This is
repeated until The longest possible list of nouns that still matches an argument
is found. This is then remade into a single entry in the noun list and the indexing
remade accordingly. In the next step the nouns are matched to the arguments
in PATTY. For each noun the module searches the database for a set number of
arguments and adds them to an argumentlist with a corresponding index.

Module 3: Tupler

This module is where the PATTY arguments are distilled from the text. It
receives as input a list of arguments of interest and a corresponding index list.
Given these datasets it traverses the argument list one argument at a time,
checking in both directions to see if there are connections between the arguments.
So as to reduce the incidence of false positives it limits its search to arguments
that are at a distance D < Dmax apart. The value for Dmax can and should be
adjusted based on the input data. Once a match is found it inserts the related
PATTY tuple into the output list.

2.1 Module 4: Swapper

The final module completes the process and outputs an edited article. It is
passed a list of PATTY tuples and a corresponding index list, using the PATTY
database it then searches for arguments that have the same pattern-ID as the
tuple and replaces the second argument with a randomly chosen argument. Then
using the supplied index and wordlist the relevant changes can be made and the
article replaced.

3 Sample replacements

An example run of the Wiki-smasher yielded the following text, a part of a
wiki-article about Alfred Nobel can be found in appendix 1.

3.1 Successful replacements

<University of Kent> held 350 different patents. Here Alfred Nobel has been
replaced i a meaningful replacement.

Alfred Nobel was a descendant of the <Block Design> scientist Olaus Rudbeck
1630–1702 . Swedish was replaced with ’Block Design’.



3.2 Unsuccessful replacements

The <International Rice Research Institute> married in 1827 and had eight
children. A nonsensical statement.

Alfred Nobel was a descendant of the <Glentoran F.C.> scientist Olaus Rudbeck
1630–1702. Another nonsensical statement. Unfortunately these replacements
often outnumber the successful ones, which can be seen in the appendix. The
discussion will mainly deal with these errors.

4 Discussion

4.1 Dmax vs sentence isolation

While the idea of narrowing the scope of argument searching via a maximum
distance approach certainly reduces the number of false positives, a more effec-
tive approach would be to limit argument searches to one sentence at a time.
This is because syntactical relations are limited by their very nature to one
sentence at a time. Furthermore the chance of multiple relational patterns oc-
curring in one sentence is rare. To utilize this to its fullest potential and further
decrease the amount of false positives, sentences should be isolated by splitting
on punctuation, and then operated upon.

4.2 Grammatical heuristics

The largest source of human detectable error in the output article was grammat-
ical flaws. These flaws are the direct result of PATTY’s design. PATTY attempts
to place a level of abstraction on the arguments so that multiple relations are
condensed into one relational pattern. This results in obviously erroneous argu-
ments after replacement. This can be circumvented by implementing a gram-
matical heuristic which rates outputs based on their grammatical correctness
and only allows correct sentences to be emitted.

4.3 Unavoidable error

It is important to note that PATTY incorrectly classifies relations around 15%
of the time[1]. This means that regardless of how well the Wiki-Smasher is im-
plemented there will still be errors. Short of improving PATTY there is nothing
that can can be done to avoid this.

References

1. Nakashole, N., Weikum, G., Suchanek, F.: Discovering semantic relations from the
web and organizing them with PATTY. SIGMOD Record, Vol. 42 No. 2 (June 2013)

2. Kristina Toutanova and Christopher D. Manning.: Enriching the Knowledge Sources
Used in a Maximum Entropy Part-of-Speech Tagger Proceedings of the Joint SIG-
DAT Conference on Empirical Methods in Natural Language Processing and Very
Large Corpora (EMNLP/VLC-2000), pp. 63-70.



Appendix 1 - Sample Article

Note: All words in brackets have replaced words in the original article.

Alfred Bernhard Nobel 21 October 1833 – 10 December 1896 was a Swedish
chemist , engineer , innovator , inventor and armaments manufacturer . He was
the inventor of dynamite . Nobel also owned Bofors , which he had redirected its
previous role as primarily an iron and steel producer to a major manufacturer of
cannon and other armaments . <Cadet Forces Medal> held 350 different patents
, dynamite being the most famous . His fortune was used posthumously to in-
stitute the <Guggenheim Fellowship> Prizes . The synthetic element nobelium
was named after him . His name also survives in modern-day companies such as
Dynamit <National academy> and AkzoNobel , which are descendants of merg-
ers with companies <Organization XIII> himself established . Alfred Nobel at
a young <Governors State University> . Born in Stockholm , <Zagreb> Nobel
was the fourth <University of Mississippi> of Immanuel Nobel 1801–1872 , an
<Columbia University> and engineer , and Carolina Andriette Ahlsell Nobel
1805–1889 . The <World Peace Corps Mission> married in 1827 and had eight
children . The family was impoverished , and only Alfred and his three brothers
survived past childhood . Through his father , Alfred Nobel was a descendant of
the <United States> scientist Olaus Rudbeck 1630–1702 , and in his turn the
boy was interested in engineering , particularly explosives , learning the basic
principles from his father at a young age . Alfred Nobels interest in technology
was inherited from his <Technology (album)> , an alumnus of Royal Institute
of Technology in <Technology (album)> . <Stuttgart> various business failures
, Nobels father moved to Saint Petersburg in 1837 and grew successful there as
a manufacturer of machine tools and explosives . He invented modern plywood
and started work on the torpedo . In 1842 , the family joined him in the city .
Now prosperous , his parents were able to send Nobel to private tutors and the
boy excelled in his studies , particularly in chemistry and languages , achieving
fluency in English , French , German and Russian . For 18 months , from 1841 to
1842 , Nobel went to the only <National Hockey League> he ever attended as
a child , the Jacobs Apologistic School in Stockholm . As a young man , Nobel
studied with <National academy> Nikolai Zinin then , in 1850 , went to Paris
to further the work and , at 18 , he went to the United States for four years to
study chemistry , collaborating for a short period under inventor John Ericsson
, who designed the American Civil War ironclad USS Monitor . Nobel filed his
first patent , for a gas meter , in 1857 .


