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1 Introduction

The lab is divided in two parts: the first part A concerns implementation of
the finite element method (FEM) in 1D, and part B concerns FEM approx-
imation in 2D.

The purpose of the lab is to get hands-on experience of implementing a
FEM program, and also to get familiar with a set of basic partial differential
equations (PDEs) and their FEM approximation.

2 Examination

Labs can be done individually or in groups of two. Each group should hand
in two compulsory written reports: Lab Report A and Lab Report B.

• Deadline Lab Report A: Friday October 2

• Deadline Lab Report B: Friday October 16

Part A and B consist of a set of compulsory problems, and a set of non-
compulsory problems that give bonus points for the written exam if submit-
ted in time for the deadline (submissions after the deadline give no bonus
points). The lab is graded by pass/fail (P/F), and maximally 5 bonus points
can be obtained for the lab.

2.1 Format of submissions

Each group member should submit individual Lab Reports by email to the
teaching assistant in time for the deadline, containing the following:
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1. A written report in pdf-format including a first page with: name, email
address and educational program for all group members. The report
should answer the questions of the lab specified in this document.

2. A one page summary of the work in the report that describes how the
work was carried out:

• Describe how you distributed the work in the group. Did you
split the work? If so, who did what?

(It is allowed to divide the work, and the source code can be
identical for all group members. But the text in the individual
reports should be written individually by each group member and
should not be copied from each other.)

• What resources were used to complete the lab assignment (books,
websites, etc.)?

(It is allowed to use any resources you find appropriate, but copy-
ing of existing code on the internet or from another group is not
allowed.)

• Who did you collaborate with apart from your group member?

(It is allowed to collaborate with other groups, but all code and
all text in the report should be written independently by the
group members, copying code or text from another groups is not
allowed.)

• Describe what you found easy and hard, respectively, with the
assignment?

3. A tar-archive of the source files needed to test the program and repro-
duce the results in Matlab/Octave.

Lab Part A

Consider the Poisson equation in 1D on the unit interval:

−u′′(x) = f(x), x ∈ (0, 1) (1)

with homogeneous Dirichlet boundary conditions

u(0) = u(1) = 0 (2)

and a force f(x) = 4π2 sin(2πx), with exact solution u(x) = sin(2πx).
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Problem A.1 (compulsory)

Derive a weak formulation the Poisson equation (1) [CDE 8.1], and state
the FEM method. Write a Matlab/Octave program that computes a fi-
nite element approximation Uh with the given boundary conditions and
force term, using linear Lagrange basis functions [CDE 5.1] λi, i = 1, 2,
and a uniform subdivision (mesh) T h = {x1, x2, ..., xN+1} of the unit in-
terval, with N subintervals (cells) Ii = (xi, xi+1) of length (mesh size)
hi = xi+1−xi, with hi = h = 0.1 constant. To compute the element integrals∫ xx+1

xi
λ′i(x)λ′j(x) dx and

∫ xx+1

xi
λ′i(x)f(x) dx, use two different quadrature

rules: (i) the composite midpoint rule [CDE 5.5.2], and (ii) the composite
two-point Gauss quadrature rule [CDE 5.5.4]. Compare the results using (i)
and (ii).

Problem A.2 (compulsory)

Modify the Matlab/Octave program in Problem A.1 to solve equation (1)
with a combination of Dirichlet and Neumann boundary conditions:

u(0) = u′(1) = 0 (3)

and a force f(x) = (9/16) ∗ 4π2 sin((3/4) ∗ 2πx).
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Hint: The Matlab interpolation function interp1 may be useful.

Hint: A typical FEM program takes the following form:

% Generate the mesh

nodes = ...

elements = ...

% Construct the local to global map

loc2glob = ...

% Assemble matrix A

for e=1:number of elements

for i=1:number of test functions

for j=1:number of trial functions

for q=1:number of quadrature points

local element matrix = ...

end

A(loc2glob(e,i),loc2glob(e,j)) += local element matrix

end

end

end

% Assemble vector b

for e=1:number of elements

for i=1:number of test functions

for q=1:number of quadrature points

local element vector = ...

end

b(loc2glob(e,i)) += local element vector

end

end

% Apply boundary conditions

...

% Solve linear system of equations Ax=b

x=linsolve(A,b)
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Problem A.3 (1 bonus point)

Compute the L2-norm [CDE 4.6.1] of the error eh = u−Uh in Problem A.1
for different uniform mesh sizes h = {2−2, 2−3, 2−4, 2−5, 2−6}. To compute
the L2-norm use, e.g., the composite midpoint quadrature rule [CDE 5.5.2]
on a reference mesh with a fine resolution href = 10−5 and N ref number of
intervals Irefi :

‖eh‖ =

(∫ 1

0
|eh|2 dx

)1/2

≈

Nref∑
i=1

|eh(xim)|2 hrefi

1/2

(4)

with xim = (xi + xi+1)/2, the midpoint of interval Irefi .

• Study the order of convergence of the approximation Uh with respect
to the mesh size, by plotting the L2-norm of the error against the
uniform FEM mesh size h in a log-log plot.

• Verify the theoretical second order convergence [CDE 15.5.3]. That is,
show that ‖eh‖ ≤ Chp with p = 2.

• Plot the error eh over the fine reference mesh, what can you say about
the structure of the error? [CDE Problem 8.9]

Lab Part B

Part B is based on the FEM program Puffin described in the last section of
this Lab PM. Consider Poisson’s equation in 2D:

−∆u(x) = f(x), x ∈ Ω, (5)

with x = (x1, x2) and Ω = [0, 1]× [0, 1] the unit square, with homogeneous
Dirichlet boundary conditions:

u(x) = 0, ∀x ∈ ∂Ω. (6)

This equation is implemented in Puffin as two m-files: PoissonSolver.m
and Poisson.m. Let the two meshes square.m and square refined.m be
denoted by T 1 and T 2, respectively. To use the solver in Matlab/Octave:

>> PoissonSolver
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Problem B.1 (compulsory)

1. Write down a FEM method for the Poisson problem using piecewise
linear Lagrange basis functions [CDE 15.1], then solve equation (5)-(6)
using Puffin for two different forces f1, f2, given by:

f1(x) = 32x1(1− x1) + 32x2(1− x2), (7)

f2(x) = 20π2 sin(2πx1) sin(4πx2), (8)

corresponding to the two exact solutions u1, u2, given by

u1(x) = 16x1(1− x1)x2(1− x2), (9)

u2(x) = sin(2πx1) sin(4πx2). (10)

2. Plot the solution and (the linear interpolation of) the error using the
two different meshes T 1 and T 2.

3. For the two different forces f1, f2 the error is different. Which one is
largest? Explain why [CDE Theorem 15.7].

4. How does the error change when the mesh is refined? Explain why
[CDE Theorem 15.7].

Problem B.2 (compulsory)

1. On the parts of the boundary where x1 = 0 and x1 = 1, respec-
tively, change the Dirichlet boundary conditions to instead homoge-
neous Neumann boundary conditions:

∂u

∂n
= ∇u · n =

∂u

∂x1
n1 +

∂u

∂x1
n2 = 0, (11)

with n = (n1, n2) the unit outward normal of the boundary. The force

f3(x) = 5π2 cos(πx1) sin(2πx2), (12)

then corresponds to the exact solution

u3(x) = cos(πx1) sin(2πx2). (13)

2. Plot the solution and (the linear interpolation of) the error using the
two different meshes T 1 and T 2.

3. Describe how the error changes when the mesh is refined. Where in
the domain is the error maximal?
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Problem B.3.1 (1 bonus point)

Now consider the convection-diffusion-reaction equation:

u̇− ε∆u+ β · ∇u+ αu = f, (x, t) ∈ Ω× (0, T ], (14)

with x = (x1, x2), Ω = [0, 1]× [0, 1], and initial solution u(x, 0) = u0(x).

1. Write down a FEM method using piecewise linear basis functions
in space and implicit Euler time stepping. The implicit Euler time
discretization for each time interval In = (tn−1, tn), with time step
kn = tn − tn−1, reads: Given u(tn−1) find u(tn) such that

u(tn)− u(tn−1)

kn
+β·∇u(tn)−ε∆u(tn)+α(x)u(tn) = f(tn) x ∈ Ω ⊂ R2.

2. Solve the problem to final time T = 0.25, using a time step k = 0.01,
on the mesh T 2, using Puffin with: α(x) = f(x) = 0, β(x) = (0, 0),
ε = 1, u0(x) = 16x1(1−x1)x2(1−x2), and use homogeneous Dirichlet
boundary conditions u(x) = 0 for the whole boundary ∂Ω.

This corresponds to the heat equation: u̇−∆u = 0, with homogeneous
Dirichlet boundary conditions. Prove that

‖u(T )‖2 + 2

∫ T

0
‖∇u‖2 dt = ‖u0‖2, ∀t > 0, (15)

meaning that the L2-norm of the solution u(t) will decrease as time
increases [CDE 16.3]. Can you see the same behavior in the computed
FEM solution?

3. The energy balance (15) also says that ‖u(t)‖ will decrease faster if
the norm of the gradient of the solution ‖∇u‖ is large. Is this true
in the computation? Try with instead u0(x) = sin(4πx1) sin(4πx2).
What do you see? Plot both solutions at final time.

4. Set α(x) = 0, ε = 0.1, β(x) = 5(−(x2−0.5), x1−0.5), and compute the
solution on the mesh T 2, up to final time T = 3.5, using a time step
k = 0.05, with homogeneous Neumann boundary conditions: ∂u/∂n =
0, and with the source term:

f(x, t) = 1, if |x− (0.75, 0.5)| < 0.1 and |t− round(t)| < 0.1,

and f(x, t) = 0 else. Describe what you see.

Hint: Use the other solvers in Puffin.
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Problem B.3.2 (1 bonus point)

1. Solve the dual problem corresponding to a stationary convection-diffusion-
reaction problem (14), that is without the time derivative u̇:

−ε∆ϕ− β · ∇ϕ+ αϕ = ψ, x ∈ Ω, (16)

with homogeneous Neumann boundary conditions: ∂ϕ/∂n = 0, and
source term

ψ(x) = 1, if |x− (0.25, 0.25)| < 0.1,

and ψ(x) = 0 else.

2. For α(x) = 0.1, ε = 0.1 and β(x) = 5(−(x2 − 0.5), x1 − 0.5), plot the
dual solution ϕ(x), and give an interpretation with respect to the error
of the FEM solution of equation (14) [CDE 15.5].

Problem B.3.3 (1 bonus point)

1. Solve a stationary convection-diffusion-reaction problem (14) with u̇ =
0, α(x) = 0.1, ε = 0.1 and β(x) = 5(−(x2 − 0.5), x1 − 0.5), on T 1 and
T 2. Then solve the same problem, now with ε = 10−4. What is the
difference in the solutions with the smaller ε? [CDE Problems 18.7
and 18.9].

2. Modify the method using least squares stabilization [CDE 18.3]. What
changes?

Problem B.4.1 (1 bonus point)

A FEM mesh T = {K} is a sub-division of Ω into a non-overlapping set of
elements (or cells) K, with diameter hK . To preserve continuity over edges,
no node (vertex) of one triangle can lie on the edge of another triangle: such
nodes are called hanging nodes, see figure below.

When locally refining a FEM mesh it is important to preserve the con-
dition of no hanging nodes. One such algorithm in 2D is the red-green mesh
refinement algorithm.

1. Implement the red-green mesh refinement algorithm as a Matlab/Octave
function in an m-file. The algorithms takes the form: Mark a number
of cells for refinement, then
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Figure 1: To the left: a hanging node that lies on the edge on a triangle.

Green

Red

Cell marked for refinement

Figure 2: Illustration of red-green mesh refinement with one cell marked for
refinement.

(a) loop over all marked cells, for each cell subdivide the edges at the
midpoints, which gives 4 new cells, and then

(b) loop over all all hanging nodes, and connect each hanging node
with the corresponding opposite nodes in each cell.

2. Illustrate the algorithm by 3 times refining the mesh T 1, marking all
cells for refinement with at least one node inside the circle defined by:
all x = (x1, x2) such that (x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.052. Plot the 3
refined meshes.

Problem B.4.2 (1 bonus point)

1. Compute the residual R(U) = f+∆U for the solutions in Problem B.1.
Use the approximation ∆U ≈ ∆hU , with ∆hU the discrete Laplacian
[CDE 15.1.4].
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2. Plot (the linear interpolation of) the error, and compare the L2-norm
of the error, using 2 different mesh refinement algorithms:

(a) 3 uniform mesh refinements (refine all cells 3 times).

(b) 5 local mesh refinements with red-green mesh refinement, where
in each step you refine 50% of the cells with the largest residual
R(U).

How many nodes are used in each step of the algorithm in the two
approaches? Which approach is the most efficient in terms of using as
few nodes as possible to obtain as low error as possible? Plot the final
meshes for 1 and 2.

Problem B.5 (1 bonus point)

1. Change the FEM basis in Puffin to using piecewise quadratic basis
functions in space.

2. Solve equation (5)-(6) with the new basis on T 1 and T 2.

Problem B.6 (1 bonus point)

Use Puffin to solve an engineering problem of your choice. Implement the
new equation in Puffin, and use a different mesh (not the unit square).
To generate a new mesh you may for example use Triangle, available for
download at:

http://www.cs.cmu.edu/∼quake/triangle.html

Puffin - a simple FEM solver

Puffin is a simple 2D FEM solver for Matlab/Octave in the form of: (1) two
m-files for the assembly of a matrix and a vector (AssembleMatrix.m and
AssembleVector.m), and (2) files describing the solution algorithm and the
definition of the PDE in variational form, for example PoissonSolver.m

and Poisson.m. To download and install Puffin:

1. Go to https://launchpad.net/puffin.

2. Download Puffin 0.1.6. to your working directory.

3. Unpack the files in puffin-0.1.6.tar.gz.
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You find the m-files in the src directory:

$ cd puffin-0.1.6/src

2.2 Meshes

In Puffin the following data structures are used to represent a FEM mesh:

• p - coordinates (x1, x2) of the nodes

• e - edge information

• t - elements (triangles): global node numbers for local nodes 1,2,3.

• The last number is a subdomain numbering.

For most 2D problems in this lab we consider the computational domain
Ω = [0, 1]× [0, 1], the unit square.

• A uniform triangular mesh T 1 of the domain Ω is available in Puffin
as square.m.

• Refining T 1 uniformly one level we get a new mesh T 2 which is avail-
able in Puffin as square refined.m.

2.3 Puffin tutorial

A good way to get familiar with Puffin is to complete the Puffin computer
sessions F1-F5 at http://www.bodysoulmath.org/sessions/.
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