SF1611 Introductory course in mathematics I. 1.5 cr Sample exam. Duration: 60 minutes. No aids allowed

The problems are worth 1 credit each and you are only required to provide answers, not complete derivations. In order to pass, you must get at least 5 credits.

ne:	••••••	••••••	••••••	•••••	•••••	•••••	Pers	s.no	••••••	Program
Resul	t:									
1	2	3	4	5	6	7	8	$oldsymbol{\Sigma}$	Grade	
. Wr	ite in	words	s how					•	sounced. $\Rightarrow \sin x < \delta$	
An	swer:									
the		er lin	-			efine th		of all r	eal numbers wh	ose distance from 7
zer			ee pol	ynom	ial x^3	$-4x^2$	-7x	+ 10 h	has a zero at $x =$	1. Find the remain
	d all p		e solu	ıtions	to the	equati	on x -	- 2 = ·	\sqrt{x} .	

5. Find an integer n such that $\left|\frac{n}{5} - e\right| < \pi - 3$.

Answer:

6. Simplify $e^{2\ln 2}$ as much as possible.

Answer:

Answer:

- 7. Find all real solutions to the equation $\cos 2x = 1/2$.
- 8. The Fibonacci number sequence f_0, f_1, f_2, \ldots begins with 0 and 1 and after that every entry is the sum of the two previous ones:

$$0, 1, 1, 2, 3, 5, 8, 13, \dots$$

Fill in the gap in the following proof that $f_n < 2^n$ for any natural number n.

Induction over n. For n=0 and n=1 the statement is true since $f_0=0<1=2^0$ and $f_1=1<2=2^1$. Under the assumption that the statement holds for n-1 and n-2 we want to show that it holds also for n.

By definition $f_n = f_{n-1} + f_{n-2}$, and by the induction assumption we have

Thus

$$f_n = f_{n-1} + f_{n-2} < 2^{n-1} + 2^{n-2} < 2^{n-1} + 2^{n-1} = 2^n.$$