SF1611 Introductory course in mathematics I. 1.5 cr

 Solutions to the sample exam. Duration: $\mathbf{6 0}$ minutes. No aids allowedThe problems are worth 1 credit each and you are only required to provide answers, not complete derivations. In order to pass, you must get at least 5 credits.

Name:
Pers.no. \qquad Program.

Result:

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Σ | Grade |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | | | |

1. Write in words how the following statement is pronounced.

$$
\forall \delta>0 \exists \varepsilon>0,|x|<\varepsilon \Rightarrow|\sin x|<\delta
$$

Answer: For any delta greater than zero there is an epsilon greater than zero such that, if the absolute value of x is less than epsilon, then the absolute value of sine x is less than delta.
2. Use mathematical symbols to define the set of all real numbers whose distance from 7 on the number line is strictly greater than 2 .
Answer: $\{x \in \mathbb{R}:|x-7|>2\}$ or $\mathbb{R} \backslash[5,9]$
3. The third-degree polynomial $x^{3}-4 x^{2}-7 x+10$ has a zero at $x=1$. Find the remaining zeros.
Answer: $x=-2$ and $x=5$
4. Find all positive solutions to the equation $x-2=\sqrt{x}$.

Answer: $x=4$
5. Find an integer n such that $\left|\frac{n}{5}-e\right|<\pi-3$.

Answer: $n=13$ or $n=14$
6. Simplify $e^{2 \ln 2}$ as much as possible.

Answer: 4
7. Find all real solutions to the equation $\cos 2 x=1 / 2$.

Answer: $x= \pm \frac{\pi}{6}+n \pi$ where $n \in \mathbb{Z}$.
8. The Fibonacci number sequence $f_{0}, f_{1}, f_{2}, \ldots$ begins with 0 and 1 and after that every entry is the sum of the two previous ones:

$$
0,1,1,2,3,5,8,13, \ldots
$$

Fill in the gap in the following proof that $f_{n}<2^{n}$ for any natural number n.

Induction over n. For $n=0$ and $n=1$ the statement is true since $f_{0}=0<1=2^{0}$ and $f_{1}=1<2=2^{1}$. Under the assumption that the statement holds for $n-1$ and $n-2$ we want to show that it holds also for n.
By definition $f_{n}=f_{n-1}+f_{n-2}$, and by the induction assumption we have

$$
f_{n-1}<2^{n-1} \text { and } f_{n-2}<2^{n-2}
$$

Thus

$$
f_{n}=f_{n-1}+f_{n-2}<2^{n-1}+2^{n-2}<2^{n-1}+2^{n-1}=2^{n} .
$$

