SF1611 Introductory course in mathematics I. 1.5 cr Exam, August 29, 2014. Duration: 60 minutes. No aids allowed

The problems are worth 1 credit each and you are only required to provide answers, not complete derivations. In order to pass, you must get at least 5 credits.

Name:
.Pers.no.
Program.
Result:

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Σ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | | | |

1. Write in words how the following statement is pronounced.

$$
\forall x \in \mathbb{R} \quad(\sqrt{x} \in \mathbb{Q} \Leftrightarrow \sqrt{x} \in \mathbb{N})
$$

Answer:

2. Write the set $\left\{x \in \mathbb{R} \mid x \geq x^{2}\right\}$ as an interval.

Answer:
3. Find a quadratic polynomial whose constant term is 2 and whose zeros are -1 and 1 .

Answer:
4. Perform the division

$$
\frac{2 x^{3}-x+1}{x+1} .
$$

Answer:

5. Find an integer $n<10$ such that $|n+1|>10$.

Answer:
6. Simplify $\ln \sqrt{e^{3}}$ as much as possible.

Answer:
7. Find all real solutions to the equation $\sin ^{2} x=1$.

Answer:
8. Fill in the gap in the following proof that $1 \cdot 2+2 \cdot 3+3 \cdot 4+\cdots+(n-1) n=\frac{1}{3}(n-1) n(n+1)$ for any positive integer n.

We will argue by induction over n. If $n=1$ the statement is true because the sum has no terms at all and the right-hand side vanishes. Under the supposition that the statement holds for n, our task is to show that it holds for $n+1$. We have $1 \cdot 2+2 \cdot 3+\cdots+n \cdot(n+1)=$ $(1 \cdot 2+2 \cdot 3+\cdots+(n-1) \cdot n)+n(n+1)$ which, by the induction assumption, equals

Factoring out $\frac{1}{3} n(n+1)$ we obtain $\frac{1}{3} n(n+1)((n-1)+3)=\frac{1}{3} n(n+1)(n+2)$, so the statement holds for $n+1$ too.

