SF1611 Introductory course in mathematics I. 1.5 cr Exam, August 29, 2014. Duration: 60 minutes. No aids allowed

The problems are worth 1 credit each and you are only required to provide answers, not complete derivations. In order to pass, you must get at least 5 credits.

Nam	e:	•••••	•••••	•••••	•••••	••••••	•••••	Pers	s.no	Program	•••••	
R	esul	t:										
	1	2	3	4	5	6	7	8	Σ	Grade		
1.	1. Write in words how the following statement is pronounced. $\forall x \in \mathbb{R} \ (\sqrt{x} \in \mathbb{Q} \Leftrightarrow \sqrt{x} \in \mathbb{N})$											
	An	swer:										
2.	2. Write the set $\{x \in \mathbb{R} \mid x \ge x^2\}$ as an interval. Answer:											
3.	3. Find a quadratic polynomial whose constant term is 2 and whose zeros are −1 and 1. Answer:											
4.	Per	form 1	the div	vision				$\frac{2x^3 - }{x - }$	$\frac{x+1}{+1}$.			
	An	swer:										

5. Find an integer n < 10 such that |n+1| > 10.

Answer:

6. Simplify $\ln \sqrt{e^3}$ as much as possible. **Answer:**

- 7. Find all real solutions to the equation $\sin^2 x = 1$. Answer:
- 8. Fill in the gap in the following proof that $1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + (n-1)n = \frac{1}{3}(n-1)n(n+1)$ for any positive integer n.

We will argue by induction over n. If n=1 the statement is true because the sum has no terms at all and the right-hand side vanishes. Under the supposition that the statement holds for n, our task is to show that it holds for n+1. We have $1 \cdot 2 + 2 \cdot 3 + \cdots + n \cdot (n+1) = \left(1 \cdot 2 + 2 \cdot 3 + \cdots + (n-1) \cdot n\right) + n(n+1)$ which, by the induction assumption, equals

Factoring out $\frac{1}{3}n(n+1)$ we obtain $\frac{1}{3}n(n+1)\big((n-1)+3\big)=\frac{1}{3}n(n+1)(n+2)$, so the statement holds for n+1 too.