Department of Mathematics

SF1625 Calculus 1 Year 2015/2016

Applied exercises from old exams

Exercise 1. From three identical boards of wood, 1 meter long and 10 cm broad, you want to construct a trough. At what angle should you place the planks in order for the trough to hold as much as possible?

Exercise 2. A carton of milk at 4° C is taken out of the fridge and placed in a room of 20° C. After 12 minutes the temperature of the milk is 12° C. After how much more time is the temperature of the milk 18° C? *Use Newton's law of cooling*

Exercise 3. A sperical container with radius R m is filled with water at v m³ per minute. How fast, i.e. with how many meters per minute, is the surface rising at the time when it is R/4 m above the lowest point of the container?

Exercise 4. A particle starts from rest and then moves with the acceleration $100 \cos t$ m/s² at time t s. What is its velocity and position after t = 3 s?

Exercise 5. A reservoire has been contaminated. A natural cleaning process occurs as clean water enters the reservoire while the contaminated water exits it. According to a mathematical model of this phenomenon the concentration K(t) of the poisonous substance at time t satisfies the differential equation

$$\frac{dK(t)}{dt} = -\frac{K(t)}{1500}.$$

How long does it take, according to the model, for the concentration of the substance to reach half of its original concentration?

Exercise 6. A vehicle starts from rest and drives for 30 minutes straight ahead with the acceleration 2 + 60t km/h². What is its speed after 30 minutes? How far has it driven?

SF1625 Modul 7 Year 2015/201	16
------------------------------	----

Exercise 7. A vehicle is to be driven 10 km. Suppose the speed after x kilometers is v(x) km/h. How long does it take for the vehicle to travel the 10 km?

Exercise 8. A 2 m long cylindrical rod with radius 0.1 m is made out of a material with variable density. If we place the rod along an x-axis between the points 0 and 2 the density ρ at the point x is

$$\rho(x) = 1 - \frac{(x-1)^2}{4} \text{ kg/m}^3,$$

Compute the mass of the rod.

Exercise 9. A car starts driving at a traffic light and increases it speed with constant acceleration until the speed is 25 m/s. Then the car continues going at constant speed 25 m/s. After 23 s the car has travelled 500 m. At what time did the car reach the speed 25 m/s?

Exercise 10. An object with mass m is moving straight ahead with speed v(t). There is force of friction -kv(t), where k is a positive constant. If no other forces affects the body we must have

$$m\frac{dv}{dt} = -kv(t).$$

Determine the speed as a function of time if k = 1, m = 2 kg and v(0) = 5 m/s. How far does the object travel after the time t = 0?

Exercise 11. Tjhe differential equation $\frac{du}{dt} = -\frac{u}{RC}$ describes the voltage u at time t when a capacitor with capacitance C is hooked up to a resistor R. Solve the differential equation and determine how long it takes for u reach half its original value.

Exercise 12. The populations of the countries A and B are growing exponentially. In A the population doubles every 50 years and in B every 150 years. Today twice as many live in B than in A. How long does take before the population in A is greater than that of B?

FACIT OCH LÖSNINGSTIPS

1. $4\pi/3$ (Lösningsförslag finns, tentamen 2013-10-26)

2. Efter ytterligare 24 minuter (Lösningsförslag finns, tentamen 2014-01-11)

3. Vattenytan stiger med hastigheten $16v/(7\pi R^2)$ meter per minut (Lösningsförslag finns, tentamen 2012-12-10)

4. Hastigheten är $100 \sin 3$ m/s och positionen är $100(1 - \cos 3)$ m.

5. 1500 ln 2 s. (Lösningsförslag finns, tentamen 2012-02-11)

6. Efter en halvtimme är hastigheten 8.5 km/h och fordonet har kört 1.5 km.

7. Tiden det tar är $\int_0^{10} \frac{1}{v(x)} \, dx$ h.

8. Stången massa är $11\pi/600$ kg. (Lösningsförslag finns, tentamen 2011-12-15)

9. 6 sekunder. (Lösningsförslag finns, tentamen 2011-10-18)

10. v(t) = 5e - t/2. Sträckan är 10 m. (Lösningsförslag finns, tentamen 2011-08-25)

11. $u(t) = ke^{-t/RC}$ där k är en godtycklig konstant. Spänningen har halverats efter tiden $RC \ln 2$. (Lösningsförslag finns, tentamen 2014-10-24)

12. 75 år. (Lösningsförslag finns, tentamen 2009-12-19)