Problem set for Seminar 6

See www.kth.se/social/course/SF1625 for information about how the seminars work and what you are expected to do. At this seminar there will be a written test. In the test you will be asked to solve a problem like one of the problems below or like one of the recommended exercises from the text book Calculus by Adams och Essex (8:th edition):

Ch 6.3: uppg $1,3,9$. Ch 6.5 : uppg $1,3,5,15,23,33,34,35$. Ch 7.1 : uppg $1,3,5,13$, 19, 21. Ch 7.2: uppg 1, 3. Ch 7.3: uppg 3, 11, 21. Ch 7.4: uppg 1, 3, 5. Ch 7.6: uppg 1, 7. Ch 7.7: uppg 1, 5.

Problems to solve before the seminar

Uppgift 1. State why these integrals are improper and compute them.
A. $\int_{0}^{1} \frac{1}{\sqrt{1-x}} d x$
B. $\int_{0}^{\infty} \frac{1}{1+x^{2}} d x$
C. $\int_{0}^{\infty} \frac{x}{\left(1+x^{2}\right)^{5 / 2}} d x$
D. $\int_{0}^{\infty} x e^{-x} d x$

Uppgift 2. Determine whether these integrals are convergent or divergent. You do not have to compute them.
A. $\int_{0}^{1} \frac{1}{x \sqrt{2-x}} d x$,
B. $\int_{1}^{\infty} \frac{1+x+\ln x}{1+e^{x}} d x$

Uppgift 3. Compute the integral $\int_{0}^{1} \sqrt{1-x^{2}} d x \quad($ use $x=\sin t)$

Uppgift 4. Compute the integral $\int_{e}^{e^{2}} \frac{\ln (\ln x)}{x} d x \quad$ (start by putting $\ln x=t$)

Uppgift 5. Compute the integral $\int_{0}^{1 / 2} \arcsin x d x \quad$ (to begin with, integrate by parts)
Uppgift 6. Compute the integral $\int_{0}^{1} \arctan x d x \quad$ (to begin with, integrate by parts)

Uppgift 7. Compute the integral $\int_{0}^{1} \frac{x-1}{x^{2}-5 x+6} d x \quad$ (use partial fractions)

Uppgift 8. Compute the volume that is generated when the area between the x-axis and the curve $y=e^{-x}$ for $0 \leq x \leq 1$ is rotated around
A. x-axis
B. y-axis

Uppgift 9. Compute the volume that is generated when the area between the x-axis and the curve $y=e^{-x^{2}}$ for $0 \leq x \leq 1$ is rotated around the y-axis.

Uppgift 10. Compute the length of the curve $y=\ln \left(1-x^{2}\right), \quad 0 \leq x \leq 0.5$.

Uppgift 11. For a certain spring, the force it takes to change the length of the spring x meter is $x / 4 \mathrm{~N}$. How much work does it take to change the length of the spring $1 / 5$ meter?

EXtra problems to discuss at the seminar

Here are some extra problems. You don't have to write down solutions in advance.

- Give an example of a function that is not integrable and explain why.
- The function $f(x)=e^{x^{2}}$ is continuous on the compact interval $[0,1]$ and is therefore integrable on that interval (ses Th 2 in Ch 5.3). Still you can not write down an anti-derivative in the usual fashion. Is there a contradiction?
- A ball with radius r has its center on the surface of another ball with radius R, where $R>r$. Compute the volume of that part of the smaller ball which is inside the bigger ball.
- Is the integral $\int_{-\infty}^{\infty} \frac{x}{x^{2}+1} d x$ convergent or divergent?
- Beräkna $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n} e^{n}} \int_{n}^{n+1} \sqrt{x} e^{x} d x$

