
DB Access

Relational
Databases and SQL

Database Access
With PHP

Database Access with PHP
Internet Applications, ID1354

1 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

Contents

Relational Databases and SQL

Database Access With PHP

2 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

Section

Relational Databases and SQL

Database Access With PHP

3 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

Database
I A database is a collection of data,

organized in tables.
I A table is a named collection of rows.

I One table represents one abstraction,
corresponds to class in object oriented
programming.

I A row in a table has a number of columns.

I Each row represents an instance of the
abstraction represented by the table. Row
corresponds to object in object oriented
programming.

I A column is a single data item having
name, type, and value.

I A column corresponds to a field in a class in
object oriented programming. All rows in the
same table has the same columns.

4 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

Database
I A database is a collection of data,

organized in tables.
I A table is a named collection of rows.

I One table represents one abstraction,
corresponds to class in object oriented
programming.

I A row in a table has a number of columns.
I Each row represents an instance of the

abstraction represented by the table. Row
corresponds to object in object oriented
programming.

I A column is a single data item having
name, type, and value.

I A column corresponds to a field in a class in
object oriented programming. All rows in the
same table has the same columns.

4 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

Database
I A database is a collection of data,

organized in tables.
I A table is a named collection of rows.

I One table represents one abstraction,
corresponds to class in object oriented
programming.

I A row in a table has a number of columns.
I Each row represents an instance of the

abstraction represented by the table. Row
corresponds to object in object oriented
programming.

I A column is a single data item having
name, type, and value.

I A column corresponds to a field in a class in
object oriented programming. All rows in the
same table has the same columns.

4 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

Database
I A database is a collection of data,

organized in tables.
I A table is a named collection of rows.

I One table represents one abstraction,
corresponds to class in object oriented
programming.

I A row in a table has a number of columns.
I Each row represents an instance of the

abstraction represented by the table. Row
corresponds to object in object oriented
programming.

I A column is a single data item having
name, type, and value.

I A column corresponds to a field in a class in
object oriented programming. All rows in the
same table has the same columns.

4 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

Structured Query Language, SQL

I SQL is an industry-standard language for
creating, updating and querying relational
databases.

I Developed by IBM in the 1970s

I A single SQL statement can be very
expressive and can initiate high-level
actions, such as sorting and merging.

5 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

Structured Query Language, SQL

I SQL is an industry-standard language for
creating, updating and querying relational
databases.

I Developed by IBM in the 1970s
I A single SQL statement can be very

expressive and can initiate high-level
actions, such as sorting and merging.

5 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

Structured Query Language, SQL

I SQL is an industry-standard language for
creating, updating and querying relational
databases.

I Developed by IBM in the 1970s
I A single SQL statement can be very

expressive and can initiate high-level
actions, such as sorting and merging.

5 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

SQL Primer

I Create a table:
create table <table name> (<column name>, <data type>

[,<column name>, <data type>]...)

I Example:
create table person (name varchar(100), age int(3),

phone varchar(12))

I varchar(100) means a string of length
100.

I int(3) means an integer with three digits.

I Delete a table:
drop table <table name>

6 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

SQL Primer

I Create a table:
create table <table name> (<column name>, <data type>

[,<column name>, <data type>]...)

I Example:
create table person (name varchar(100), age int(3),

phone varchar(12))

I varchar(100) means a string of length
100.

I int(3) means an integer with three digits.

I Delete a table:
drop table <table name>

6 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

SQL Primer

I Create a table:
create table <table name> (<column name>, <data type>

[,<column name>, <data type>]...)

I Example:
create table person (name varchar(100), age int(3),

phone varchar(12))

I varchar(100) means a string of length
100.

I int(3) means an integer with three digits.

I Delete a table:
drop table <table name>

6 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

SQL Primer

I Create a table:
create table <table name> (<column name>, <data type>

[,<column name>, <data type>]...)

I Example:
create table person (name varchar(100), age int(3),

phone varchar(12))

I varchar(100) means a string of length
100.

I int(3) means an integer with three digits.

I Delete a table:
drop table <table name>

6 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

SQL Primer

I Create a table:
create table <table name> (<column name>, <data type>

[,<column name>, <data type>]...)

I Example:
create table person (name varchar(100), age int(3),

phone varchar(12))

I varchar(100) means a string of length
100.

I int(3) means an integer with three digits.

I Delete a table:
drop table <table name>

6 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

SQL Primer, Cont’d

I Retrieve a set of rows and columns:
select <column names> from <table name>

where <search condition>
[order by <column name> [asc | desc]]

I Example:
select name, age from person

where name = ’nisse’

7 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

SQL Primer, Cont’d

I Retrieve a set of rows and columns:
select <column names> from <table name>

where <search condition>
[order by <column name> [asc | desc]]

I Example:
select name, age from person

where name = ’nisse’

7 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

SQL Primer, Cont’d

I Insert rows:
insert into <table name> [(<column names>)]

values (<expressions>)

I Example:
insert into person

values (’frida’, 76, ’878345745’)

8 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

SQL Primer, Cont’d

I Insert rows:
insert into <table name> [(<column names>)]

values (<expressions>)

I Example:
insert into person

values (’frida’, 76, ’878345745’)

8 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

SQL Primer, Cont’d

I Update rows:
update <table name>

set <column name = <expression>,
[, <column name> = <expression>] ...

where <search condition>

I Example:
update person set age = 12

where name = ’nisse’

9 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

SQL Primer, Cont’d

I Update rows:
update <table name>

set <column name = <expression>,
[, <column name> = <expression>] ...

where <search condition>

I Example:
update person set age = 12

where name = ’nisse’

9 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

SQL Primer, Cont’d

I Delete rows:
delete from <table name>

where <search condition>

I Example:
delete from person where age = 52

10 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

SQL Primer, Cont’d

I Delete rows:
delete from <table name>

where <search condition>

I Example:
delete from person where age = 52

10 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

MySQL

I A free, efficient, widely used database
system.

I Available from
http://www.mysql.org or as a part
of a XAMP package.

11 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

MySQL

I A free, efficient, widely used database
system.

I Available from
http://www.mysql.org or as a part
of a XAMP package.

11 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

Question 1

12 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

Section

Relational Databases and SQL

Database Access With PHP

13 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

MySQL APIs in PHP
I PHP offers three different APIs to connect

to MySQL: mysql, PDO_MySQL and
mysqli.

I mysql should not be used, it has been
deprecated as of PHP 5.5.0 and will
eventually be removed.

I The main difference between the other two
is that PDO_MySQL is only object oriented,
while mysqli has both an object oriented
and a procedural API.

I The examples on the following slides use
the object oriented API of mysqli.

14 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

MySQL APIs in PHP
I PHP offers three different APIs to connect

to MySQL: mysql, PDO_MySQL and
mysqli.

I mysql should not be used, it has been
deprecated as of PHP 5.5.0 and will
eventually be removed.

I The main difference between the other two
is that PDO_MySQL is only object oriented,
while mysqli has both an object oriented
and a procedural API.

I The examples on the following slides use
the object oriented API of mysqli.

14 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

MySQL APIs in PHP
I PHP offers three different APIs to connect

to MySQL: mysql, PDO_MySQL and
mysqli.

I mysql should not be used, it has been
deprecated as of PHP 5.5.0 and will
eventually be removed.

I The main difference between the other two
is that PDO_MySQL is only object oriented,
while mysqli has both an object oriented
and a procedural API.

I The examples on the following slides use
the object oriented API of mysqli.

14 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

MySQL APIs in PHP
I PHP offers three different APIs to connect

to MySQL: mysql, PDO_MySQL and
mysqli.

I mysql should not be used, it has been
deprecated as of PHP 5.5.0 and will
eventually be removed.

I The main difference between the other two
is that PDO_MySQL is only object oriented,
while mysqli has both an object oriented
and a procedural API.

I The examples on the following slides use
the object oriented API of mysqli.

14 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

Configure Error Handling

I The following statement makes mysqli
throw an exception of class
mysqli_sql_exception when an
error occurs.
mysqli_report(MYSQLI_REPORT_ERROR

MYSQLI_REPORT_STRICT);

I Without this statement, it is necessary to
check for error numbers to know if an
operation succeeded.

15 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

Configure Error Handling

I The following statement makes mysqli
throw an exception of class
mysqli_sql_exception when an
error occurs.
mysqli_report(MYSQLI_REPORT_ERROR

MYSQLI_REPORT_STRICT);

I Without this statement, it is necessary to
check for error numbers to know if an
operation succeeded.

15 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

Connect to a Database

I The following statement connects to the
database persons on the MySQL server
on localhost, using the username
user and the password pass.
$personDb = new \mysqli(’localhost’, ’user’,

’pass’, ’persons’);

I The created connection is represented by
an instance of the class mysqli, which is
stored in the variable $personDb.

16 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

Connect to a Database

I The following statement connects to the
database persons on the MySQL server
on localhost, using the username
user and the password pass.
$personDb = new \mysqli(’localhost’, ’user’,

’pass’, ’persons’);

I The created connection is represented by
an instance of the class mysqli, which is
stored in the variable $personDb.

16 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

Execute a SQL Statement

I The query method in the mysqli
instance is used to execute a SQL
statement.
$personDb->query(’drop table if exists person’);

17 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

Prepared Statements
I A prepared statement execution consists of two

stages: prepare and execute.
I At the prepare stage, a statement template is sent to

the database server. The server performs a syntax
check and initializes server resources for later use.

I During the execute stage, the client binds parameter
values and sends them to the server. The server
creates a statement from the statement template
and the bound values and executes it.

I Prepared statements are more secure, more about
this on coming lectures.

I Prepared statements are faster than ordinary
statements when executing the same statements
multiple times, since they are interpreted only once
by the database server.

18 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

Prepared Statements
I A prepared statement execution consists of two

stages: prepare and execute.
I At the prepare stage, a statement template is sent to

the database server. The server performs a syntax
check and initializes server resources for later use.

I During the execute stage, the client binds parameter
values and sends them to the server. The server
creates a statement from the statement template
and the bound values and executes it.

I Prepared statements are more secure, more about
this on coming lectures.

I Prepared statements are faster than ordinary
statements when executing the same statements
multiple times, since they are interpreted only once
by the database server.

18 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

Prepared Statements
I A prepared statement execution consists of two

stages: prepare and execute.
I At the prepare stage, a statement template is sent to

the database server. The server performs a syntax
check and initializes server resources for later use.

I During the execute stage, the client binds parameter
values and sends them to the server. The server
creates a statement from the statement template
and the bound values and executes it.

I Prepared statements are more secure, more about
this on coming lectures.

I Prepared statements are faster than ordinary
statements when executing the same statements
multiple times, since they are interpreted only once
by the database server.

18 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

Prepared Statements
I A prepared statement execution consists of two

stages: prepare and execute.
I At the prepare stage, a statement template is sent to

the database server. The server performs a syntax
check and initializes server resources for later use.

I During the execute stage, the client binds parameter
values and sends them to the server. The server
creates a statement from the statement template
and the bound values and executes it.

I Prepared statements are more secure, more about
this on coming lectures.

I Prepared statements are faster than ordinary
statements when executing the same statements
multiple times, since they are interpreted only once
by the database server.

18 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

Prepared Statements
I A prepared statement execution consists of two

stages: prepare and execute.
I At the prepare stage, a statement template is sent to

the database server. The server performs a syntax
check and initializes server resources for later use.

I During the execute stage, the client binds parameter
values and sends them to the server. The server
creates a statement from the statement template
and the bound values and executes it.

I Prepared statements are more secure, more about
this on coming lectures.

I Prepared statements are faster than ordinary
statements when executing the same statements
multiple times, since they are interpreted only once
by the database server.

18 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

Create and Execute a Prepared
Statement
1 $updateStmt =
2 $personDb->prepare(
3 "update person set age = ?, phone = ? where name = ?"
4);
5 $updateStmt->bind_param(’iss’, $age, $phone, $name);
6 $updateStmt->execute();

I The prepare method in the mysqli instance
creates a prepared statement, lines one to four.

I The question marks in the SQL statement on line
three are parameters that shall be bound to values
before the statement is executed.

I The bind_param method, line five, binds those
parameters to the values of the php variables $age,
$phone and $name, in that order.

I The string ’iss’ on line five tells the types of the
parameters: integer, string, string.

I The execute method on line six executes the
prepared statement.

19 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

Create and Execute a Prepared
Statement
1 $updateStmt =
2 $personDb->prepare(
3 "update person set age = ?, phone = ? where name = ?"
4);
5 $updateStmt->bind_param(’iss’, $age, $phone, $name);
6 $updateStmt->execute();

I The prepare method in the mysqli instance
creates a prepared statement, lines one to four.

I The question marks in the SQL statement on line
three are parameters that shall be bound to values
before the statement is executed.

I The bind_param method, line five, binds those
parameters to the values of the php variables $age,
$phone and $name, in that order.

I The string ’iss’ on line five tells the types of the
parameters: integer, string, string.

I The execute method on line six executes the
prepared statement.

19 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

Create and Execute a Prepared
Statement
1 $updateStmt =
2 $personDb->prepare(
3 "update person set age = ?, phone = ? where name = ?"
4);
5 $updateStmt->bind_param(’iss’, $age, $phone, $name);
6 $updateStmt->execute();

I The prepare method in the mysqli instance
creates a prepared statement, lines one to four.

I The question marks in the SQL statement on line
three are parameters that shall be bound to values
before the statement is executed.

I The bind_param method, line five, binds those
parameters to the values of the php variables $age,
$phone and $name, in that order.

I The string ’iss’ on line five tells the types of the
parameters: integer, string, string.

I The execute method on line six executes the
prepared statement.

19 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

Create and Execute a Prepared
Statement
1 $updateStmt =
2 $personDb->prepare(
3 "update person set age = ?, phone = ? where name = ?"
4);
5 $updateStmt->bind_param(’iss’, $age, $phone, $name);
6 $updateStmt->execute();

I The prepare method in the mysqli instance
creates a prepared statement, lines one to four.

I The question marks in the SQL statement on line
three are parameters that shall be bound to values
before the statement is executed.

I The bind_param method, line five, binds those
parameters to the values of the php variables $age,
$phone and $name, in that order.

I The string ’iss’ on line five tells the types of the
parameters: integer, string, string.

I The execute method on line six executes the
prepared statement. 19 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

Create and Execute a Prepared
Statement
1 $updateStmt =
2 $personDb->prepare(
3 "update person set age = ?, phone = ? where name = ?"
4);
5 $updateStmt->bind_param(’iss’, $age, $phone, $name);
6 $updateStmt->execute();

I The prepare method in the mysqli instance
creates a prepared statement, lines one to four.

I The question marks in the SQL statement on line
three are parameters that shall be bound to values
before the statement is executed.

I The bind_param method, line five, binds those
parameters to the values of the php variables $age,
$phone and $name, in that order.

I The string ’iss’ on line five tells the types of the
parameters: integer, string, string.

I The execute method on line six executes the
prepared statement. 19 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

Read the Search Result of a
Select Statement
1 $persons = array();
2 $selectStmt = $personDb->prepare("select * from persons");
3 $selectStmt->execute();
4 $selectStmt->bind_result($name, $age, $phone);
5 while ($this->selectStmt->fetch()) {
6 $persons[] = new Person($name, $age, $phone);
7 }

I A select statement is created on line two.
I The prepared statement is executed on line three.

This returns a result set with all rows and columns
found by the select.

I The result of the select is bound to the php
variables $name, $age and $phone on line four.

I The values for all columns on the first row in the
result set is placed in the variables on line five. Each
following call to fetch will load a new row.

I Each turn in the loop will create a new Person
object and store that object in an array on line six.

20 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

Read the Search Result of a
Select Statement
1 $persons = array();
2 $selectStmt = $personDb->prepare("select * from persons");
3 $selectStmt->execute();
4 $selectStmt->bind_result($name, $age, $phone);
5 while ($this->selectStmt->fetch()) {
6 $persons[] = new Person($name, $age, $phone);
7 }

I A select statement is created on line two.
I The prepared statement is executed on line three.

This returns a result set with all rows and columns
found by the select.

I The result of the select is bound to the php
variables $name, $age and $phone on line four.

I The values for all columns on the first row in the
result set is placed in the variables on line five. Each
following call to fetch will load a new row.

I Each turn in the loop will create a new Person
object and store that object in an array on line six.

20 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

Read the Search Result of a
Select Statement
1 $persons = array();
2 $selectStmt = $personDb->prepare("select * from persons");
3 $selectStmt->execute();
4 $selectStmt->bind_result($name, $age, $phone);
5 while ($this->selectStmt->fetch()) {
6 $persons[] = new Person($name, $age, $phone);
7 }

I A select statement is created on line two.
I The prepared statement is executed on line three.

This returns a result set with all rows and columns
found by the select.

I The result of the select is bound to the php
variables $name, $age and $phone on line four.

I The values for all columns on the first row in the
result set is placed in the variables on line five. Each
following call to fetch will load a new row.

I Each turn in the loop will create a new Person
object and store that object in an array on line six.

20 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

Read the Search Result of a
Select Statement
1 $persons = array();
2 $selectStmt = $personDb->prepare("select * from persons");
3 $selectStmt->execute();
4 $selectStmt->bind_result($name, $age, $phone);
5 while ($this->selectStmt->fetch()) {
6 $persons[] = new Person($name, $age, $phone);
7 }

I A select statement is created on line two.
I The prepared statement is executed on line three.

This returns a result set with all rows and columns
found by the select.

I The result of the select is bound to the php
variables $name, $age and $phone on line four.

I The values for all columns on the first row in the
result set is placed in the variables on line five. Each
following call to fetch will load a new row.

I Each turn in the loop will create a new Person
object and store that object in an array on line six. 20 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

Read the Search Result of a
Select Statement
1 $persons = array();
2 $selectStmt = $personDb->prepare("select * from persons");
3 $selectStmt->execute();
4 $selectStmt->bind_result($name, $age, $phone);
5 while ($this->selectStmt->fetch()) {
6 $persons[] = new Person($name, $age, $phone);
7 }

I A select statement is created on line two.
I The prepared statement is executed on line three.

This returns a result set with all rows and columns
found by the select.

I The result of the select is bound to the php
variables $name, $age and $phone on line four.

I The values for all columns on the first row in the
result set is placed in the variables on line five. Each
following call to fetch will load a new row.

I Each turn in the loop will create a new Person
object and store that object in an array on line six. 20 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

Inserting HTTP Parameters in a
Database

I When using HTTP parameters in database
calls, the characters (’ " \ and NULL)
might cause problems.

I To escape these characters, use the
function
real_escape_string($str)
$name = "O’Hara"
$name = $personDb->real_escape_string($name);

21 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

Inserting HTTP Parameters in a
Database

I When using HTTP parameters in database
calls, the characters (’ " \ and NULL)
might cause problems.

I To escape these characters, use the
function
real_escape_string($str)
$name = "O’Hara"
$name = $personDb->real_escape_string($name);

21 / 22

DB Access

Relational
Databases and SQL

Database Access
With PHP

Question 2

22 / 22

	Relational Databases and SQL
	Database Access With PHP

