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PREFACE
This compendium describes how Monte Carlo methods can be applied to simulate technical systems.
The description covers background on probability theory and random number generation as well as the
thoery and practice of efficient Monte Carlo simulations. The core of the compendium is based on lec-
tures that have been given at KTH for several years; however, the presentation here also includes more
explanatory texts and exercises with solutions.

I would like to give a warm thank you to colleagues and students who have helped improve the con-
tents of this compendium by asking questions, pointing out errors and suggesting additional topics.

Stockholm
August 2015 Mikael Amelin
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Chapter 1

INTRODUCTION
Monte Carlo methods refers to a class of methods to solve mathematical problems using random sam-
ples. A straightforward example is the computation of the expectation value of a random variable;
instead of computing the expectation value according to the definition (which may involve solving com-
plex integrals) we observe the behaviour of the random variable, i.e., we collect samples, and estimate
its expactation value based on these samples. However, Monte Carlo methods may also be used for solv-
ing deterministic problems. This might seem odd at a first glance, but the idea is simply to find a ran-
dom variable, the statistic properties of which is depending on the solution to the deterministic prob-
lem. An example of this would be an opinion poll. Assume that there is going to be an election. If we
ignore that people may change their preferences over time and consider just one specific point of time
then the share of voters who are planning to vote for a certain candidate is deterministic. However, in
order to compute the true value of this share, we would have to ask all voters which candidate they
favour. An alternative would be to ask a limited number of randomly chosen voters and use these sam-
ples to estimate the share of votes the candidate will obtain.

This compendium will describe how Monte Carlo methods can be used for simulation of various tech-
nical systems. The compendium includes many mathematical definitions and formulae, but it should be
emphasised that this is not a mathematical textbook. The focus of the presentation will be how Monte
Carlo methods can be applied to solve engineering problems; hence, the mathematics should be seen as
a tool and not a topic in itself. This means that for example mathematical proofs will only be provided in
order to improve the understanding of the described methods, and some mathematical details might be
ignored.

1.1 Brief History

The phrase “Monte Carlo methods” was coined in the beginning of the 20th century, and refers to the
famous casino in Monaco1—a place where random samples indeed play an important role. However,
the origin of Monte Carlo methods is older than the casino. 

To be added: History of probability theory…
To be added: Bernouille, Poisson and the law of large numbers...
To be added: Buffon’s needle
To be added: Modern development...

1.2 Problem Definition

This entire compendium is focusing on methods for simulation of systems on one specific format. (This
might seem as a large limitation, but the reader will soon see that a wide range of systems fit into this
format.) An overview of this format is given in figur 1.1. The studied systems are modelled by a set of

1. It has been said that if Monte Carlo methods had been first explored today, they would have been
referred to as “Las Vegas methods”.
1.1 Brief History 1



Chapter 1 Introduction
random input variables, which we at this point simply collect into a vector, Y. The probability distribu-
tion of these inputs must be known. We also have and a set of output variables, which we also collect
into a vector, X. As these outputs are depending on the random inputs, they must be random variables
as well; however, the probability distribution of the outputs is not known—in fact, the objective of sim-
ulating the system is to determine the behaviour of the outputs. Finally, we have a mathematical model
of the system, which determines how the values of the outputs are calculated given the values of the
input variables. We denote the mathematical model as a function g, such that X = g(Y). This function
defines how the values of the outputs are computed given the values of the input values. In this com-
pendium, a set of random values for each input will be referred to as a scenario.

Example 1.1. To be added: Example of a model expressed explicitly...

To be added: Discussion of model constants…
In example 1.1 it was possible to write the output as an explicit function of the input. This is however a

special case, and most models g(Y) will be defined implicitly and may require several steps before the
output values are computed. A typical example would be there the output values depend on the solution
to an optimisation problem, and also require a few other calculations to obtain the final results. for
example from the solution to an optimisation problem, as illustrated in the next example:

Example 1.2 (simple two-area power system). Consider a power system divided in two
areas: a generation centre and a load centre. The generation centre is dominated by large
renewable power plants, but there is also a small local load, whereas the load centre has
most of the load in the system, but there is also some thermal power plants. The renewable
power plants in the generation centre are assumed to have negligible variable operation
costs and the risk of outages is also negligible. Moreover, the capacity of the renewable
power plants is larger than the maximal local load; hence, the generation centre always has
excess power to export to the load centre. However, the interconnection between the areas
has a limited capacity and there is a risk of outages. There are also electrical losses on the
interconnection; these losses are proportional to the square of the power injected into the
interconnection. The variable costs of the thermal power plants in the load centre is
assumed to be directly proportional to the power output (i.e., start-up costs and ramp rates
etc. may be neglected) and there is a risk of outages in these units. Finally, the load in the
two areas is varying randomly. It can be assumed that the load is described by one proba-
bility distribution for the total load of the system, and another probability distribution for
the share of the load that is located in the main load centre.

The system is operated in such a manner that the first priority is to avoid load shedding
(i.e., when load has to be disconnected because there is not sufficient generation capacity
available in the system) and the second priority is to minimise the generation costs. Volt-
age and frequency control may be neglected. The objective of simulating this power system
is to determine the total operation cost and the risk of load shedding. Formulate a model of
this kind of power system and show how the values of the outputs are calculated given the
values of the inputs.

Solution: Start by introducing symbols for the inputs and outputs of this simulation
problem:

Inputs

The inputs are the random variables of the model. In this case we have random outages in
thermal power plants and the interconnection between the areas, as well as random loads
in the two areas:

Figure 1.1 The simulation problem considered in this compendium. 

Inputs, Y Model,
g(Y)

Outputs, X
2 1.2 Problem Definition



Chapter 1 Introduction
c = share of the total load that is located in the main load centre,
Dtot = total load in the system,

= available generation capacity in thermal plants g,
= available transmission capacity on the interconnection between the two areas.

Outputs

We are actually only interested in two outputs (the total operation cost and whether load
shedding occurs or not), but in order to compute these two values, we will need some par-
tial results. Since the partial results also depend on the values of the random inputs, they
will in practice also be outputs (i.e., random variables with unknown probability distribu-
tions depending on the probability distributions of the inputs). In this case, the model will
be generating the following outputs:

D1 = load in the main load centre,
D2 = load in the generation centre,
Gg = generation in thermal power plant g,
H = generation in the renewable power plants,

LOLO = loss of load occasion (binary variable equal to 1 if load shedding is necessary and 
0 otherwise),

P = transmission from the generation centre to the load centre,
TOC = total operation cost,

U = unserved load,

where LOLO and TOC are the outputs that we want to study.

Model constants

In order to formulate the mathematical model, we are going to need some additional val-
ues:

Gg = variable operation cost of thermal power plant g,
U = penalty cost for unserved load,
L = loss coefficient for the interconnection between the areas,

= available generation capacity in the renewable power plants.

To be added: Comment the penalty cosst for unserved load…

Mathematical model

Now we can formulate the calculations necessary to compute the values of the outputs for
a scenario. First, we need to compute the local load in each area:

D1 = c·Dtot, (1.1a)

D2 = (1 – c)·Dtot. (1.1b)

The next step is to determine how the system will be operated. This can be formulated as
an optimisation problem, where the objective function (1.2a) states that the costs of the
system should be minimised, the constraints (1.2b), (1.2c) state that there should be bal-
ance between generation, load and import in the load centre and between generation, load
an export in the generation centre and the limits (1.2d)–(1.2f) state that generation and
transmission may not exceed the available capacity.

minimise (1.2a)

subject to (1.2b)

H = D2 + P, (1.2c)

0  Gg   g, (1.2d)

Gg
P

H

GgGg UU,+
g


Gg
g
 P P2–+ D1 U,–=

Gg,
1.2 Problem Definition 3
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0  H (1.2e)

0  P (1.2f)

To be added: Explanation of the model and description of how the problem can be solved
using a simple algorithm…

Finally, once it has been determined how the power system is operated, the two main out-
puts can be computed from the solution to the optimisation problem:

LOLO = (1.3a)

TOC = (1.3b)

It is important to notice that the model g is deterministic! Hence, if we have two scenarios, y1 and y2,
producing two sets of output values, x1 = g(y1) and x2 = g(y2) then if y1 = y2 we will get that x1 = x2. If this
property is not fulfilled, the model is missing inputs and should be reformulated, as in the following
example:

Example 1.3. To be added: Example of a model which is missing an input value (power
grid, where the reliability is depending on the sucess of reclosing breakers after a failure)
...

1.3 Notation

Before we start investigating the application of Monte Carlo methods to solve the simulation problem
described above, it might be useful to introduce a general notation, which will be used throughout this
compendium. Once the reader is familiar with this notation, it will be more straightforward to interpret
the mathematical expression appearing in the following chapters.

• Random variables. All random variables are denoted by upper-case Latin letters; usually just
one single letter, for example Y or X, but sometimes several letters, such as LOLO and TOC in
example 1.2.

• Samples. An observation of a random variable (i.e., a sample) is denoted by the lower-case of
the symbol used for the random variable itself, for example y or x. In most cases, we also use an
index in order to separate different samples from each other, i.e., yi or xi.

• Populations. A population is denoted by the same upper-case Latin letter as the corresponding
random variable, but using a script font, for example Y or X. The value of the i:th unit in a popu-
lation is denoted by the lower-case symbol used for population itself, indexed by i, for example
yi or xi.

• Probability distributions. Probability distributions are denoted by Latin f in upper or lower
case (depending on interpretation2) and an index showing to which random variable the distri-
bution is associated, for example fY or FX. The idea of the index is to tell different probability
distributions apart from each other. 

• Statistical properties. Key statistical properties of a probability distribution are denoted by
lower-case Greek letters and an index showing to which random variable the statistical proper-
ty is associated, for example Y or X. The idea of the index is to tell different probability distri-
butions apart from each other.

• Estimates. Estimates of key statistical properties for a probability distribution are denoted by
upper or lower case (depending on interpretation3) Latin counterpart of the symbol used for
the statistical property itself and an index showing to which random variable the statistical
property is associated, for example MX or sX. The idea of the index is to tell different probability
distributions apart from each other.

2. Cf. section 2.1.
3. Cf. section 4.1.

H,

P.

0

1

 if U 0,=

if U 0,

GgGg.
g


4 1.3 Notation



Chapter 2

RANDOM VARIABLES
As the idea of Monte Carlo simulation is to estimate values using random observations, it is natural that
a basic understanding of probability theory is necessary. This chapter summarises the probability the-
ory that will be used in the remainder of the compendium. The focus of the presentation will be on ran-
dom variables.

2.1 Probability Distributions

Intuitively, we may understand a random variable exactly as the name suggests, i.e., a variable, the
value of which is varying according to some random pattern. This pattern, which characterises the
behaviour of the random variable is referred to as its probability distribution. There is an infinite num-
ber of possible probability distributions; however, some common classes of distributions have been
identified and named. A brief overview can be found in appendix A.

2.1.1 Populations

The formal mathematical definition of a random variable is however slightly more complex, and will
therefore not be discussed here.

For a discussion of sampling and Monte Carlo simulation, a useful interpretation of random variables
is to consider a random variable to be associated with a certain population, which we define as follows:

Definition 2.1. The random variable X corresponds to a population, X, which is a set with N
members (which are referred to as “units”). Each unit has a value, xi, which may be multi-
dimensional. The values of the units in X do not have to be unique, but they should include
all possible outcomes of the random variable X and the relative occurrence of a certain
value should be proportional to the probability of the corresponding outcome.

Example 2.1. State the population corresponding to the following random variables:

a) D, which represents the result of throwing a normal six-sided dice.

b) To be added…

Solution: 

a) D = {1, 2, 3, 4, 5, 6}

b) To be added…

Based on this definition we can distinguish between some main categories of populations (and conse-
quently between different categories of random variables). First we can differentiate between variables
where the outcome can only belong to specific, discrete values or if the outcome can be found in contin-
uous intervals:

Definition 2.2. If the population is finite or countable infinite, the random variable is dis-
2.1 Probability Distributions 5



Chapter 2 Random Variables
crete; otherwise, it is continuous.

To be added: Examples…
As pointed out in definition 2.1, the units in a population may have more than one value. If each unit

has one value, the population directly corresponds to one random variable. However, if the units have
more than one value, we may consider each value to represent a separate random variable, which then
have a joint probability distribution.

Definition 2.3. If each unit in the population is associated to a single value, the probability
distribution is univariate; otherwise it is multi-variate.

To be added: Examples…
Finally, we can also study how the values of the units in a population is varying:

Definition 2.4. If all units in univariate population have the same or almost the same
value, the population is said to be homogeneous.

Definition 2.5. If most units in univariate population have the different values, the popu-
lation is said to be heterogeneous.

Definition 2.6. If the majority of the units in a univariate population have the same value
(these units are referred to as the conformist units), the population is said to be duogene-
ous. The remainder of the population (which is referred to as the diverging units) may
either be homogeneous (i.e, all diverging units have the same value) or heterogeneous (i.e.,
the diverging units have different values).

To be added: Examples…
It may be noted that the difference between a homogeneous and a heterogeneous population may

depend on the situation. 
To be added: Example where the population is homogeneous for a rough estimate, whereas it can be

considered heterogeneous if a precise estimate is required.

2.1.2 Other Common Definitions of Probability Distributions

There are several ways to represent probability distributions mathematically. Populations are often
useful for describing and understanding Monte Carlo simulation, but other definitions can also be use-
ful in some cases, and are also frequently applied in other fields of statistical analysis and stochastic
methods. Hence, it is important to be familiar with the following definitions:

Definition 2.7. The probability that an observation of a discrete random variable X is equal
to the value x is given by the frequency function, fX(x), i.e., 

P(X = x) = fX(x).

If we compare the definition of a frequency function to a population, we see that the value of the fre-
quency function is equal to the number of units in the population having the value x compared to the
total size of the population, i.e.,

fX(x) = (2.1)

A similar definition is used for continuous random variables. However, as the probability of getting
exactly the value x is infinitesimal, the function fX(x) is referred to as a density function1 and represents
the probability that an observation is within a given range:

Definition 2.8. The probability that an observation of a discrete random variable X belongs
to a set X is given by the density function, fX(x), i.e., 

P(X  x) = 

An alternative to density functions is to study distribution functions:

1. This denomination is sometimes also used for discrete random variables; a frequency function can be
considered as a special type of density function.

NX x=

N
--------------- .

fX x  x.d
X


6 2.1 Probability Distributions



Chapter 2 Random Variables
Definition 2.9. The probability that an observation of a discrete random variable X is less
than or equal to the value x is given by the distribution function, FX(x), i.e., 

P(X  x) = FX(x).

From definition 2.9 it follows that FX(x) must be an increasing function,2 that FX(x)  0 if x  – and
that FX(x)  1 if x  +. Moreover, comparing definitions 2.8 and 2.9, we see that

P(X  x) = FX(x) = (2.2)

i.e., the distribution function is the primitive function of the density function. (This is the reason for
choosing the symbols F and f for distribution function and density function analogous to the notation
used in calculus.)

Finally, in some applications it is preferable to consider a duration curve instead of the distribution
function. (An example is simulation of electricity markets, cf. appendix C.) Duration curves can be
designed in different manners, but the one most suitable for probability analysis is the normalised
inverse duration curve, which we in this compendium will refer to simply as a duration curve.

Definition 2.10. The probability that an observation of a discrete random variable X is
larger than the value x is given by the duration curve,  i.e., 

P(X  x) = 

In a similar way as for distribution functions, we can notice that  must be an increasing function,
that   1 if x  –, that   0 if x  + and that 

P(X  x) =  = 1 – FX(x) = (2.3)

2.2 Statistical Properties

The probability distribution of a random variable is a complete description of its behaviour. However,
in many cases we do not need such detailed information, but would prefer some key values that
describe the main characteristics of the random variable. Therefore, different statistical measures have
been introduced. The most important statistical measures are defined below.

Expectation Value

The expectation value of random variable is a the mean of all possible outcomes weighted by probabil-
ity:

Definition 2.11. The expectation value of a random variable X is given by

 (population),

 (discrete random variable),

 (continuous random variable).

As seen above, the definition varies slightly depending on whether the probability distribution is
expressed as a population or using a density function. We may notice that it is the expression corre-

2. The probability that a random variable is less than or equal to a cannot be smaller than the probability
that a random variable is less than or equal to b if b > a.

fX x  x,d

–

x



F̃X x ,

F̃X x .

F̃X x 
F̃X x  F̃X x 

F̃X x  fX x  x.d

x





E X  1
N
---- xi

i 1=

N

=

E X  fX x x
x X
=

E X  fX x x xd
x X
=
2.2 Statistical Properties 7



Chapter 2 Random Variables
sponding to the weighting according to probability that varies; hence, the following parts in the defini-
tions above fulfil the same purpose:

   

As we will see below, this pattern will appear also in the other definitions of statistical properties.
The practical interpretation of the expectation value is that if we have a set of samples of a random

variable, and this set is distributed exactly according to the probability distribution, then the expecta-
tion value is the mean of those samples. We can intuitively understand that if we have a large number of
samples, it is quite likely that the samples will be distributed almost according to the probability distri-
bution of the variable; hence, the mean of a large number of samples should be approximately equal to
the expectation value. (In fact, this is the very foundation of simple sampling, as we will see in
chapter 4).

Although most random variables have a well-defined expectation value, one should be aware that
there is no guarantee that this is the case. This might seem strange, and is best understood by an exam-
ple:

Example 2.2 (The S:t Petersburg paradox). Consider a game where a player pays a fixed
fee to participate. The player then tosses a coin until a head appears. If a head appears in
the j:th trial, the payout of the game is 2j. 

To be added: Expected payout of the game…

Variance and Standard Deviation

The variance of a random variable describes how much a random variable is varying around the expec-
tation value. 

To be added: Figure

Definition 2.12. The variance of a random variable X is given by

Var[X] = E[(X – E[X])2] = E[X2] – (E[X])2 (general definition),

 (population),

 (discrete random variable),

 (continuous random variable).

A disadvantage with variance is that the unit of Var[X] is the square of the unit of X. For example, if X
is the unserved load in a power system and expressed in kWh/h then the variance of X is expressed in
(kWh/h)2. In many cases, it is more convenient to have a measure of the variation that is directly com-
parable to the variable itself and the expectation value. Therefore, the notion of standard deviation has
been introduced:

Definition 2.13. The standard deviation of a random variable X is given by

X = 

Covariance and Correlation Coefficient

The covariance describes how different random variables in a multivariate distribution are interacting
with each other:

Definition 2.14. The covariance of two random variables X and Y is given by

 = 

1
N
----

i 1=

N

 fX x 
x X
 fX x … xd

x X
 .

Var X  1
N
---- xi E X – 2

i 1=

N

=

Var X  fX x  x E X – 2

x X
=

Var X  fX x  x E X – 2 xd
x X
=

Var X .

Cov X Y  E X E X –  Y E Y –  = E XY  E X E Y .–
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Switching place between X and Y in definition 2.14 does not change the result, i.e., 

Cov[X, Y] = Cov[Y, X]. (2.4)

We can also observe that the covariance between a variable and itself is equal to the variance of the var-
iable, i.e., 

Cov[X, X] = Var[X]. (2.5)

To be added: Discussion of covariance matrix…

Definition 2.15. A covariance matrix shows the covariances between all random variables
in a multivariate probability distribution:

X = 

To be added: Discussion of correlation coefficient…

Definition 2.16. The correlation factor of two random variables X and Y is given by

To be added: Discussion of independent random variables…

Definition 2.17. X and Y are independent random variables if it holds for each x and y that

fX, Y(x, y) = fX(x)fY(y)  FX, Y(x, y) = FX(x)FY(y).

Theorem 2.18. If X and Y are independent then

E[XY] = E[X]E[Y].

Corollary 2.19. If X and Y are independent then they are also uncorralated.

It should be noted that the reverse of corollary 2.19 does not hold, i.e., if two variables are uncorrelated
we cannot conclude that they are independent! This is because the correlation is only a measure of the
linear dependence of two random variables; hence, if there is a purely non-linear relation between two
random variables, they will still be uncorrelated. Compare the following two examples:

Example 2.3. Assume that Y has the frequency function

fX(x) = 

and assume that X = Y2. Are X and Y uncorrelated?

Solution: We start by computing expectation values according to definition 2.11:

E[XY] =  = 20,

E[X] =  = 6,

E[X] =  = 2.

The covariance of X and Y can now be computed according to definition 2.14:

Cov[X, Y] = E[XY] – E[X]E[Y] =  20 + 6 · 2 = 32.

As the covariance is larger than zero, we can conclude that X and Y are positively corre-
lated.

…Var X1  Cov X1 X2  Cov X1 Xk 

Cov X2 X1  Var X2 

Cov Xk X1  Var Xk 

.… …

X Y
Cov X Y 

Var X Var Y 
-----------------------------------------.=

1 5
0


 if x 0 1 2 3 4,   =

otherwise.

1
5
--- 0 12 1 22 2 32 3 42 4++++ 

1
5
--- 0 12 22 32 42+ + + + 

1
5
--- 0 1 2 3 4+ + + + 
2.2 Statistical Properties 9
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Example 2.4. Assume that Y has the frequency function

fX(x) = 

and assume that X = Y2. Are X and Y uncorrelated?

Solution: We start by computing expectation values according to definition 2.11:

E[XY] =  = 0,

E[X] =  = 2,

E[X] =  = 0.

The covariance of X and Y can now be computed according to definition 2.14:

Cov[X, Y] = E[XY] – E[X]E[Y] =  0 + 2 · 0 = 0.

As the covariance is zero, we can conclude that X and Y are uncorrelated.

2.3 Arithmetics of Random Variables

If a random variable X is a function of another random variable Y then it is generally difficult to directly
compute the probability distribution of X based on the probability distribution of Y—this is one of the
reasons why we would like to apply Monte Carlo simulation instead. However, there are some specific
cases, where direct computations are straightforward. Some of these cases are described in the follow-
ing theorems and will be used in the theoretical analysis of Monte Carlo simulation in this compen-
dium.

Theorem 2.20. (Calcualation of expectation value) Assume that a is a scalar, and Y, Y1
and Y2 are random variables. The following rules then apply to expectation values:

i) E[aY] = aE[Y],

ii) E[Y1 + Y2] = E[Y1] + E[Y2],

iii) E[g(Y)] =  (population),

E[g(Y)] =  (discrete random variable),

E[g(Y)] =  (continuous random variable).

Theorem 2.21. (Calculation of variance) Assume that a is a scalar, and Y, Y1, Y2 etc. are
random variables. The following rules then apply to variances:

i) Var[aY] = a2Var[Y],

ii) Var[Y1 + Y2] = Var[Y1] + Var[Y2] + 2Cov[Y1, Y2],

iii) Var[Y1 – Y2] = Var[Y1] + Var[Y2] – 2Cov[Y1, Y2],

iv)  = 

1 5
0


 if x 2 1 0 1 2,  ––=

otherwise.

1
5
--- 2– 2 2–  1– 2 1–  0 12 1 22 2++ ++ 

1
5
--- 2– 2 1– 2 0 12 22+ + + + 

1
5
--- 2–  1–  0 1 2+ + + + 

1
N
---- g yi 

i 1=

N



fY y g y 
y Y


fY
y Y 
 y g y dy

Var Yi

i 1=

k

 Cov

j 1=

k

 Yi Yj .
i 1=

k
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Chapter 2 Random Variables
Theorem 2.22. (Convolution) If Y1 and Y2 are independent random variables then the
probability distribution of X = Y1 + Y2 can be computed using convolution:

i)  (discrete random variables),

ii)  (continuous random variables).

Exercises

2.1 Are the following random variables heterogeneous or duogeneous?

a) fX(x) = 

b) fX(x) = 

c) fX(x) = 

d) fX(x) = 

e) fX(x) = 

More exercises to be added…

fX x  fY1
t fY2

x t– 
t
=

fX x  fY1
t fY2

x t– 
–



=

0.1

0

 if 10 x 20, 

otherwise.

1 11
0


 if x 10 11  20,  =

otherwise.

0.6

0.4

0



 if x 10,=

if x 20,=

otherwise.

0.6

0.04

0



 if x 10,=

if 10 x 20,
otherwise.

0.3

0.05

0



 if 10 x 12, 

if 12 x 20,
otherwise.
 Exercises 11
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Chapter 3

RANDOM NUMBERS
The idea of a Monte Carlo simulation is to estimate the behaviour of the simulated system using ran-
dom samples. When sampling a physical system, the randomness of the samples will be generated by
the system itself. However, when simulating a system using a mathematical model, it will be necessary
to generate random input values. This chapter will present methods how to do this. The presentation
will start with a description how to generate U(0, 1)-distributed random numbers and then it is
explained how random numbers of any other distribution can be obtained by transformation of random
numbers from a U(0, 1)-distribution.

3.1 Pseudo-random Numbers

One possibility to provide random numbers in a computer simulation would be to use some kind of
hardware device. Such a device could be designed to generate truly random values, but there would also
be an important disadvantage, namely that we would lack control of the produced random numbers. As
a consequence, running the same simulation twice would generally not produce the same set of sam-
ples, which can be a problem especially when testing a simulation method or model. For example,
assume that we run a simulation and we detect a few scenarios where the mathematical model produces
erroneous output models. Once the errors have been corrected, it would be practical to be able to run
the same scenarios again in order to verify that the problem has been solved.

Therefore, random number generation in computers are based on special mathematical functions or
algorithms, which given one or more initial values (referred to as seeds) produces a sequence of num-
bers between 0 and 1. This sequence is in reality deterministic, which means that if the same seed is
used, it will produce the same sequence (which makes simulations repeatable). Since these functions
are not truly random, they are called pseudo-random number generators. However, a properly
designed function will generate a sequence that has properties as close as possible to that of a true
sequence of independent U(0, 1)-distributed random numbers.

In practice, we do not need to worry about designing good pseudo-random number generators, as
such functions are readily available in almost all high-level programming languages. In fact, it is prefer-
able to use built-in pseudo-random number generators rather than programming one of your own, as
the built-in functions should have been carefully designed to provide appropriate statistical properties.

Nevertheless, it can be of interest to get an idea of the principles for generation of pseudo-random
numbers. As an example, we will study the widely used linear congruential generator. The sequence of
numbers for this pseudo-random number generator is computed using the following formulae:

Xi + 1 = (aXi + c) mod m, (3.1a)

Ui = (3.1b)

where

X1 = the seed,

Xi

m
----- ,
3.1 Pseudo-random Numbers 11
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Xi = internal state i,
a = an integer multiplier (0 < a < m),
c = an integer increment (0 < c < m),

m = an integer divisor (0 < m),
Ui = pseudo-random number i.

The modulo operator in (3.1a) returns the remainder of when dividing (aXi + c) by m. The result of this
operation is an integer in the interval 0, …, m – 1. This means that the linear congruential generator can
at most produce m possible values before the sequence starts repeating itself. In order to make the
sequence as similar to a uniform distribution as possible, we would like the sequence to be as long as
possible. This can be achieved if the following rules are considered when choosing the constants a, c and
m:

• The greatest common divisor of c and m should be 1.

• a – 1 should be divisable by all prime factors of m.

• a – 1 should be a multiple of 4 if m is a multiple of 4.

The application of linear congruential generators is demonstrated in the following two examples:

Example 3.1. What sequence of numbers is generated by a linear congruential generator
where a = 5, c = 3 and m = 8 for the seed X1 = 1?

Solution: We can notice that the constants are fulfil the requirements above. The compu-
tations when starting with X1 = 1 and applying (3.1a) are shown in table 3.1 below. We can
see that the sequence will repeat itself after eight values, which is the maximal length of
the sequence when m = 8. 

Example 3.2. What sequence of numbers is generated by a linear congruential generator
where a = 5, c = 6 and m = 8 for the seed X1 = 1?

Solution: This time we do not fulfil the first requirement, as both c and m can be divided
by 2. The computations when starting with X1 = 1 and applying (3.1a) are shown in
table 3.2 below. This time we only get four values before the sequence starts repeating
itself, and for the remainder of the sequence we will only see the internal states 3, 5 and 7.

In an actual Monte Carlo simulation, it is always recommended to use the built-in pseudorandom
number generator of the programming language used. However, in the examples in this compendium,
it can be interesting to see how the random numbers were computed. Therefore, let us consider one last
example of the linear congruential generator:

Example 3.3. Generate 20 numbers using a linear congruential generator where a = 21,
c = 3 and m = 1 000 for the seed X1 = 770?

Table 3.1 Computation of the random number sequence in example 3.1.

i 1 2 3 4 5 6 7 8

Xi 1 0 3 2 5 4 7 6

Ui 0.125 0.000 0.375 0.250 0.625 0.500 0.875 0.750

5Xi + 3 8 3 18 13 28 15 38 33

Xi + 1 0 3 2 5 4 7 6 1

Table 3.2 Computation of the random number sequence in example 3.2.

i 1 2 3 4

Xi 1 3 5 7

Ui 0.125 0.375 0.625 0.750

5Xi + 6 11 21 31 41

Xi + 1 3 5 7 3
12 3.1 Pseudo-random Numbers
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Solution: The first 20 values in the sequence when applying (3.1a) and (3.1b) are shown
in the table below.

3.2 Transformation of Random Numbers

As described in the previous section, random inputs for Monte Carlo simulations can be created by
standard pseudorandom number generators available in almost all programming languages. However,
these generators produce U(0, 1)-distributed random numbers and unfortunately it is rarely so that all
inputs of the system to be simulated have that probability distribution. Hence, we need to be able to
convert U(0, 1)-distributed random numbers to the actual probability distributions of the inputs. There
are several methods that can be applied to perform this transformation. In this section, some methods
that are well suited for Monte Carlo simulations are described. 

The inputs to a Monte Carlo simulation do not need to be independent—the possibility to simulate
systems with correlated inputs is one of the advantages of Monte Carlo simulation. However, generat-
ing random numbers for correlated random variables can be tricky, and therefore it is convenient if all
inputs can be considered as independent. It might therefore be preferable to neglect weak correlations
or to rearrange the inputs to avoid correlations.1 

3.2.1 Independent Random Numbers

Most probability distributions can be generated using the inverse transform method:

Theorem 3.1. (Inverse Transform Method) If U is a U(0, 1)-distributed random number
then Y is a distributed according to the distribution function FY(x) if Y is calculated accord-
ing to Y =  

To be added: Examples…

Random Numbers from Finite Populations

To be added: Introduction…
To be added: Search algortihm…
To be added: Comments… (Notice that the states must be sorted if complementary random numbers

will be applied to an input!)
To be added: Examples…

Normally Distributed Random Numbers

To be added: Introduction…

Table 3.3 Computation of the random number sequence in example 3.3.

i 1 2 3 4 5 6 7 8 9 10

Xi 770 173 636 359 542 385 88 851 874 357

Ui 0.770 0.173 0.636 0.359 0.542 0.385 0.088 0.851 0.874 0.357

21Xi + 3 16 173 3 636 13 359 7 542 11 385 8 088 1 851 17 874 18 357 7 500

Xi + 1 173 636 359 542 385 88 851 874 357 500

i 11 12 13 14 15 16 17 18 19 20

Xi 500 503 566 889 672 115 418 781 404 487

Ui 0.500 0.503 0.566 0.889 0.672 0.115 0.418 0.781 0.404 0.487

21Xi + 3 10 503 10 566 11 889 18 672 14 115 2 418 8 781 16 404 8 487 10 230

Xi + 1 503 566 889 672 115 418 781 404 487 230

1. The latter can be done by dividing the population in separate subpopulations, which are simulated sep-
arately (cf. section 5.6).

FY
1– U .
3.2 Transformation of Random Numbers 13
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Theorem 3.2. (Approximate Inverse Transform Method) If U is a U(0, 1)-distributed
random number then Y is a N(0, 1)-distributed random number, if Y is calculated according
to 

Q = 

t = 

c0 = 2.515517, c1 = 0.802853, c2 = 0.010328,

d1 = 1.432788, d2 = 0.189269, d3 = 0.001308,

z = t – 

and finally

Y= 

To be added: Comments and exampels…

3.2.2 Correlated Random Numbers

A Monte Carlo simulation can have inputs that are correlated. It should however be noted that genera-
tion of correlated random numbers is not as straightforward as generation of independent random
numbers.

General Method

To be added…

Random Numbers from Finite Populations

To be added…

Normally Distributed Random Numbers

To be added…

Approximative Method

To be added…

Exercises

To be added…

U

1 U–

 if 0 U 0.5, 

if 0.5 U 1,

2 Qln– ,

c0 c1t c2t2+ +

1 d1t d2t2 d3t3+ + +
--------------------------------------------------

z–

0

z



 if 0 U 0.5,

if U 0.5,=

if 0.5 U 1.
14  Exercises



Chapter 4

SIMPLE SAMPLING
The most straightforward approach to Monte Carlo simulation is to collect samples completely at ran-
dom. This sampling strategy is referred to as simple sampling and a Monte Carlo simulation based on
simple sampling might be referred to as a crude Monte Carlo simulation. Although we will see in the
next chapter that it is in fact possible to get better results using other sampling methods, it is necessary
to understand simple sampling before other methods are studied. Moreover, in some cases simple sam-
pling will be the most efficient simulation method, either due to the properties of the simulated study or
because the time to develop a more advanced simulation method is longer than the time to obtain a rea-
sonable result from simple sampling.

4.1 Estimating Expectation Values

The idea of a Monte Carlo simulation is to collect random samples and based on these observations try
to compute one or more values, for example a statistical property of a random variable or a determinis-
tic value such as the mathematical constant  in Buffon’s needle experiment. However, as the result is
depending on random observations, it is inevitable that we introduce a random error—the result of a
Monte Carlo simulation will most likely not be exactly equal to the true value. In that sense, the result of
a Monte Carlo simulation is just an estimate, which we would like to be as close as possible to the true
value.

It is important to notice that since the result of a Monte Carlo simulation is a function of several ran-
dom samples, the result must also be a random variable. This is reflected in the notation for estimates
that will be used in this compendium. If we are discussing general properties of an estimate calculated
using one or another simulation method, we will denote the estimate by an upper-case Latin letter cor-
responding to the statistical property that we are trying to estimate. For example, the expectation value
of the random variable X is denoted X, which means that we choose the symbol MX for the random var-
iable representing the estimate of X. However, if we are actually computing an estimate then we are in
fact studying an outcome of MX, and we will then use the symbol mX, i.e., the lower-case Latin counter-
part of X.

Accuracy and Precision

In everyday language, we may use the word “accuracy” to describe if an estimate is close or not to the
true value. However, in science, accuracy should be separated from “precision”. In this section, the
meaning and difference between these two notions will be described, and we will at the same time dis-
cuss desirable properties of an estimate.

What we want from an estimate is that it should be as close as possible to the true value. Each simula-
tion method that we create will generate estimates from a certain probability distribution; therefore, we
may study this probability distribution of the estimate, in order to determine if it is likely or not that we
will get a result close to the true value. It can then be seen that there are two different ways that an esti-
mate can be “close” to the true value.

Let us start by examining the difference between the expectation value of the estimate, E[MX], and the
4.1 Estimating Expectation Values 15
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true value, X. This difference is referred to as the accuracy of the estimate. Examples of estimates with
low and high accuracy are shown in figures 4.1a and 4.1b. We can see that a high accuracy means that
the difference between E[MX] and X is small; consequently, we have a better probability that the result-
ing estimate from a simulation is close to the true value compared to a simulation with lower accuracy.
Since the accuracy is a constant for a given simulation method (remember that each simulation method
will result in its own probability distribution of the estimate) it represents the systematical error in a
simulation. The ideal is of course if we can set up a simulation with no systematical error, i.e., that
E[MX] = X. In this case, we say that we have an unbiased estimate.

Now, we may continue by examining the variance of the estimate, Var[MX]. If we go back to the defini-
tion, the variance is the expected quadratic deviation from the expectation value; hence, the variance
describes how much a random variable will vary around its expectation value. A low variance means
that it is likely that we only have a small deviation between a single observation of the random variable
and its expectation value, whereas a high variance means that it is more likely to have large deviations.
The variance of the estimate is referred to as the precision of the estimate. The precision is inversely
proportional to the variance, i.e., a large variance of the estimate means that we have a low precision,
whereas a low variance yields a high precision (cf. figures 4.1c and 4.1d). The precision represents the
random error of a Monte Carlo simulation. Unlike systematical errors, this is something that cannot be
avoided when sampling. What we would like to is therefore to keep the random error as small as possi-
ble.

The Law of Large Numbers

To be added: Introduction…

Theorem 4.1. (Law of Large Numbers): If x1, …, xn are independent observations of the
random variable X then 

E[MX]

a) Estimate with low accuracy and low precision.

c) Estimate with low accuracy and high precision.

b) Estimate with high accuracy and low precision.

d) Estimate with high accuracy and high precision.

E[MX]

fMX

X

x

E[MX]

fMX

X

x

fMX

X

x

fMX

X

x

E[MX]

Figure 4.1 Illustration of the meaning of “accuracy” and “precision” respectively. 
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is an unbiased estimate of E[X].

Proof: MX is an unbiased estimate of E[X] if E[MX] = E[X]. Let Ti denote the number of
times that unit i appears in the samples; hence, the outcome of Ti is an integer between 0
and n. The estimate of the expectation value can then be expressed as

The number of successful trials when n trials are performed and the probability of success
is p in each trial is Binomial-distributed, i.e, Ti is B(n,  1/N)-distributed. 

 = {the expectation value of a B(n, p)-distribution is 

n·p} =  

Notice the similarity between the definition of expectation value (definition 2.7) and the formula for the
estimate of the expectation value (theorem 4.1 above):

  (4.1)

When calculating the expectation value analytically, we enumerate all units in the population and com-
pute the mean value, whereas in simple sampling we enumerate all selected samples and compute the
mean value.

Replacement

To be added: Definition of replacement…
To be added: Discussion of the precision of the estimated expectation value…

Example 4.1. Consider an urn with five balls. The balls are either white or black. (They
also have different sizes, but that we will ignore in this example.) Introduce a random var-
iable X representing the colour of a randomly chosen ball from the urn, such that 

X = 

Examine the probability distribution of MX if five samples are collected with and without
replacement respectively.

mX
1
n
--- xi

i 1=

n

=

MX
1
n
--- Tix i.

i 1=

N

=

E MX  E
1
n
--- Tix i

i 1=

N


1
n
---E Ti x i

i 1=

N

= =

1
n
--- n

N
----x i

i 1=

N


1
N
---- x i

i 1=

N

 E X .= =

X
1
N
---- xi

i 1=

N

= mX
1
n
--- xi.

i 1=

n

=

Figure 4.2 Simple urn experiment. 

0

1

 if  the ball is white,

if the ball is black.
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Solution: To be added: Define frequency function, compute X, explain figure 4.3 (and
add the probability of each state during the sample process)…

Theorem 4.2. In simple sampling, the variance of the estimated expectation value is

Proof: To be added?

The factor (N – n)/N is called fpc (finite population correction). For infinite populations we get 

(4.2)

To be added: Interpretation of the theorem & examples…

4.2 Other Estimates

To be added: Introduction…

Estimating Variance

To be added: Introduction…
From the comparison in (4.1) one might guess that an estimate of the variance can be obtained by 

(4.3)

However, this estimate requires that we know the true expectation value, and if this was the case we
would also be able to analytically compute the variance. Hence, (4.3) cannot be applied in practice. But
what about replacing the true expectation value by the estimated expectation value, i.e., 

(4.4)

It turns out that the (4.4) is indeed an estimate of Var[X], although, the estimate is biased. 
To be added: Explanation why (4.4) is biased?

Theorem 4.3. If x1, …, xn are independent observations of the random variable X then

is an unbiased estimate of Var[X].

The proof of theorem 4.3 is not trivial and will therefore will be omitted from this presentation. As a
substitute, we may verify the theorem as well as (4.3) and (4.4) by an example: 

Example 4.2. Consider the urn experiment from example 4.1. Examine the probability
distribution of the estimates (4.3), (4.4) and theorem 4.3 respectively if five samples are
collected (with replacement).

Solution: The true variance of the urn experiment is given by

Var[X] =  = 0.4 · (0 – 0.6)2 + 0.6 · (1 – 0.6)2 = 0.24.

As the order in which the samples appear is of no interest for neither the estimated mean
nor the estimated variance, we can distinguish between six possible outcomes, as listed in
table 4.1 below. The estimates of mean and variance are then computed for each combina-
tion of collected samples. The probability for a certain result can be computed using the

Var MX  Var X 
n

----------------- N n–
N

------------- .=

Var MX  Var X 
n

----------------- .=

1
n
--- xi X– 2.

i 1=

n



1
n
--- xi mX– 2.

i 1=

n



sX
2 1

n 1–
------------ xi mX– 2

i 1=

n

=

fX x  x X– 2

x
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mX = 0.5

fMX

1

x

1

fMX

1

x

1

fMX

1

x

1

fMX

1

x

1

fMX

1

x

1

mX = 0 mX = 1

2
5
--- 3

5
---

mX = 0 mX = 0.5 mX = 1

3
4
---1

4
--- 2

4
---

2
4
---

mX = 1
mX = 0.67

mX = 0.33

3
3
--- 1

3
--- 1

3
---

2
3
---

mX = 0.5
mX = 0.75

mX = 0.6

2
2
--- 1

2
--- 1

2
---

2
2
---

1
1
--- 1

1
---

Figure 4.3 Probability distribution of the estimated expectation value in the urn experiment. Sampling without
replacement is shown to the left and sampling with replacement is shown to the right.
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event tree in figure 4.3.

From the results in table 4.1 we can compute the expectation value of the estimated vari-
ance for the three different methods:

 =  = 0.24.

 =  = 0.192.

 =  = 0.24.

These results confirm that (4.3) and theorem 4.3 are unbiased estimates (because the
expectation value of the estimate is equal to the true value), whereas (4.4) tends to under-
estimate the variance.

To be added: Show how  can be computed using sums of xi and xi
2.

To be added: Estimating covariance…

Estimating Probability Distributions

To be added…

Estimating Covariance

To be added…

4.3 Application

To be added: Introduction…

Stopping Rules

To be added: Discussion of how many samples should be analysed in a Monte Carlo simulation…

Table 4.1 Probability distribution of the estimated variance in the urn experiment.

Collected samples

Probability

Estimated mean, 
mX

0 0.2 0.4 0.6 0.8 1

Estimated variance

0.36 0.32 0.28 0.24 0.2 0.16

0 0.16 0.24 0.24 0.16 0

0 0.2 0.3 0.3 0.2 0

32
3 125
------------- 240

3 125
------------- 720

3 125
-------------

1 080
3 125
--------------- 810

3 125
------------- 243

3 125
-------------

1
n
--- xi X– 2

i 1=

n



1
n
--- xi mX– 2

i 1=

n



1
n 1–
------------ xi mX– 2

i 1=

n



E
1
n
--- xi X– 2

i 1=

n


32

3 125
-------------0.36

240
3 125
-------------0.32

720
3 125
-------------0.28

1 080
3 125
-------------0.24

810
3 125
-------------0.2

243
3 125
-------------0.16+ + + + +

E
1
n
--- xi mX– 2

i 1=

n


32
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-------------0 240

3 125
-------------0.16

720
3 125
-------------0.24

1 080
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-------------0.24
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-------------0.16
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-------------0+ + + + +

E
1

n 1–
------------ xi mX– 2

i 1=
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-------------0 240
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-------------0.2

720
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-------------0.2 1 080
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-------------0.3 810
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-------------0.3 243
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-------------0+ + + + +
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2
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Confidence Intervals

To be added: Confidence intervals…

Simulation Procedure

To be added: Discussion…

Example 4.3 (simple sampling of Akabuga District). To be added…

Figure 4.4 Principle of simple sampling. 

Pseudo-
random
number

generator

Inverse
transform

method

U Y Mathematical
model

X
Sampling MX
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Chapter 5

VARIANCE REDUCTION
TECHNIQUES
It was shown in the previous chapter that the variance of an estimated expectation value, Var[MX], is
related to the precision of the simulation; a low variance means that it is more likely that the result will
be accurate, whereas a high variance means that there is a larger risk that the result will be inaccurate.
We also learned that Var[MX] is depending on the probability distribution of the samples variable
(which we cannot affect) and the number of samples (which we do control). However, until now we
have studied simple sampling, where the samples are selected completely at random (i.e., each unit in
the population has the same probability of being selected). Interestingly, if we manipulate the selection
of samples, the variance of the estimate can be lower than for simple sampling. Such methods to
improve the precision of a Monte Carlo simulation are referred to as variance reduction techniques.
This chapter will describe six variance reduction techniques.

5.1 Complementary Random Numbers

The idea behind complementary random numbers is to reduce the influence of random fluctuations,
which always appear in sampling, by creating a negative correlation between samples. In practice, this
means that the generation of random numbers is manipulated in such a way that the probability of an
even spread over the whole population increases.

5.1.1 Principle

Assume that the expectation value E[X] = X has been estimated in two separate simulations, i.e., we
have two estimates MX1 and MX2 such that

E[MX1] = E[MX2] = X. (5.1)

It is not surprising that the mean of the two estimates is also an estimate of X, and we can easily verify
that this is the case, because

 =  =  = X. (5.2)

As the expectation value of the mean estimate is equal to X, the mean estimate is in itself an unbiased
estimate of X in accordance to the discussion in section 4.1. The interesting question is now how pre-
cise this mean estimate is compared to simple sampling with the same total number of samples. From
(4.2) we have that simple sampling with in total n samples results in

(5.3)

Now assume that the two estimates MX1 and MX2 each include n/2 samples (which means that the total
number of samples is still n) then variance of the mean estimate is given by

E
MX1 MX2+

2
---------------------------- 1

2
--- E MX1  E MX2 +  1

2
--- X X+ 

Var MX  Var X 
n

------------------
X

2

n
------- .= =
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 = + (5.4)

If MX1 and MX2 both are independent estimates obtained with simple sampling then we get Var[MX1] =
Var[MX2] =  and Cov[MX1, MX2] = 0. Hence, (5.4) yields

 =  =  = (5.5)

By comparing (5.3) and (5.5) we see that the precision is the same, which is also what we should
expect—running one simulation of n independent samples should be the same thing as combining the
results of two independent simulations of n/2 independent samples each.

However, the interesting part is that if the two estimates are not independent but negatively corre-
lated then (5.4) will result in a variance that is lower than the variance for simple sampling with the
same amount of samples. The questions is then how we should proceed in order to find estimates that
are negatively correlated. A straightforward method is to use complementary random numbers when
we generate scenarios for a Monte Carlo simulation.

• We start with a random number from a random number generator, which we have seen in
section 3.1, corresponds to a U(0, 1)-distributed random variable. If U is a value from the ran-
dom number generator then we define U* = 1 – U as the complementary random number of U.
It is easy to verify that U and U* are negatively correlated with U, U* = –1.

• Then we transform both the original random number and the complementary random number
into the probability distribution of the input. If this is done using a the inverse transform
method then we get that Y =  and Y* =  These values will also be negatively
correlated, but the transformation may weaken the correlation, i.e., we get Y, Y*  –1. This also
holds for the other transformation methods presented in section 3.2.

• Next we compute the value of the output for both original and the complementary input value,
i.e, X = g(Y) and X* = g(Y*). If the simulated system is such that there is a correlation between
the input and output values then the original and complementary output values will also be
negatively correlated, but again the correlation might be weakened, i.e., we get X, X*  Y, Y*.

• Finally, we let MX1 be an estimate based on n samples of X, whereas MX2 is obtained from sam-
pling the corresponding values of X*. Obviously, we will now have two estimates that are nega-
tively correlated.

5.1.2 Application

To be added: Introduction…

Multiple Inputs

To be added: Discussion on how to manage systems with multiple inputs…

Auxiliary Inputs

Complementary random numbers result in a variance reduction if there is a negative correlation
between the original and complementary result variables (X and X*). The challenge when setting up a
simulation is however that we cannot directly control the values of the result variables, but only the val-
ues of the inputs (Y and Y*)—complementary random numbers will be efficient if the negative correla-
tion between Y and Y* also results in a negative correlation between X = g(Y) and X* = g(Y*). This may
not be true for all inputs to a system, and we should then not apply complementary random numbers to
these inputs.

Sometimes it might even not be possible to find any input variable that fulfils the criterion above. This
does however not necessarily mean that complementary random numbers are not applicable to this sys-
tem, as there might be a possibility to introduce an auxiliary input that does fulfil the criterion. An aux-
iliary input, YE, is defined as an arbitrary function of the actual inputs to the system, i.e., 

YE = h(Y1, …, YJ). (5.6)
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Chapter 5 Variance Reduction Techniques
A straightforward choice of the arbitrary function h would be to use the sum of some of the inputs.

Example 5.1 (auxiliary inputs for a small multi-area power system). Consider a power
system divided in three areas. The inputs to a simulation of this system is the available
generation capacity in each unit,  …,  and the load in each area, D1, D2, D3. The
objective of the simulation is to study the total operation cost and the reliability of supply.
Assume that complementary random numbers should be used to improve the efficiency of
the simulation. To which inputs should we apply complementary random numbers?

Solution: Each individual input will only have a weak impact on the outputs. For exam-
ple, if one unit is unavailable we cannot predict that the system will have a higher opera-
tion cost or that there will be load shedding, because the other units can be available or the
load can be low. However, we can introduce two auxiliary inputs, namely the total availa-
ble generation capacity, tot =  +  +  +  and total demand, Dtot = D1 + D2 +
D3. A negative correlation between two values of the auxiliary inputs will also result in a
negative correlation between at least one of the result variables, as illustrated in table 5.1.

In order to correctly simulate a system considering auxiliary inputs, we need to have the probability
distribution of the auxiliary inputs. Although this may require some computational efforts, it should not
be a problem as the probability distribution of all the original inputs is known. Moreover, we must
make sure that the random values of the auxiliary inputs are consistent with the random values of the
original inputs. As the auxiliary inputs are a function of some original inputs, there will clearly be a cor-
relation between auxiliary and original inputs. We could therefore identify their joint probability distri-
bution and randomise values according to this distribution. 
To be added: Further discussion (challenge of generating correlated numbers, cf. section 3.2.2).

Example 5.2 (joint probability distribution of available generation capacity). Data for
the generating units in example 5.1 are shown in table 5.2. Identify the joint probability
distribution for the total generation capacity and the generation capacity in each unit.
Moreover, generate a scenario using the value 0.17 from a U(0, 1)-distribution as well as a
complementary scenario.

Solution: As each unit can either be available or unavailable, we will in total have sixteen
possible states for the available generation capacity of all units. For each of these states we
can compute the total available generation capacity and the probability of that state. The
result of this enumeration, sorted according to increasing values of tot are listed in
table 5.3.

To be added: Comments… (for example, why is there a difference between state 2 and 3)

To be added: Figure showing the distribution function and the result of applying the

Table 5.1 Correlations between auxiliary inputs and result variables in example 5.1.

Total available 
generation 

capacity, tot

Total demand, 
Dtot

Total operation 
cost, TOC

Loss of load, 
LOLO

Low Low Low Not likely

High Low Low Very unlikely

Low High High Quite likely

High High High Not likely

Table 5.2 Data for the power system in example 5.2.

Unit, g Area, n
Installed 

capacity,  
[MW]

Availability [%]

1 1 500 95

2 2 500 95

3 2 800 90

4 3 1 000 90

G1, G4

G G1 G2 G3 G4,

G

Gg

G
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Chapter 5 Variance Reduction Techniques
inverse transform method using U = 0,17 and U* = 0,83.

Simulation Procedure

To be added: Overview, equations, block diagram and example…

5.2 Dagger Sampling

This variance reduction technique is based on a similar principle as complementary random numbers.
Dagger sampling is however limited to two-state probability distributions. 

To be added: Further comments?

5.2.1 Principle

Consider a two-state random variable Y with the frequency function

fY(x) = (5.7)

where p < 0.5. This probability distribution is clearly fulfilling the criteria of a duogeneous population
(cf. definition 2.6), with the value a being the conformist units and b the diverging units.

In dagger sampling, random values of Y are not generated by the inverse transform method, but using
a dagger transform:

Theorem 5.1. (Dagger Transform) If U is a U(0, 1)-distributed random number then Y is a
distributed according to the frequency function (5.7) if Y is calculated according to

 for j = 1, …, S,

where S is the largest integer such that S  1/p.

Table 5.3 Joint probability distribution of the available generation capacity in example 5.2. 

State, i

Total 
available 

generation 
capacity, 

tot [MW]

Available 
generation 
capacity in 

unit 1,
 [MW]

Available 
generation 
capacity in 

unit 2,
 [MW]

Available 
generation 
capacity in 

unit 3,
 [MW]

Available 
generation 
capacity in 

unit 4,
 [MW]

Probability, 

1 0 0 0 0 0 0.05 · 0.05 · 0.1 · 0.1 = 0.000025

2 500 500 0 0 0 0.95 · 0.05 · 0.1 · 0.1 = 0.000475

3 500 0 500 0 0 0.05 · 0.95 · 0.1 · 0.1 = 0.000475

4 800 0 0 800 0 0.05 · 0.05 · 0.9 · 0.1 = 0.000225

5 1 000 0 0 0  1 000 0.05 · 0.05 · 0.1 · 0.9 = 0.000225

6 1 000 500 500 0 0 0.95 · 0.95 · 0.1 · 0.1 = 0.009000

7 1 300 500 0 800 0 0.95 · 0.05 · 0.9 · 0.1 = 0.004275

8 1 300 0 500 800 0 0.05 · 0.95 · 0.9 · 0.1 = 0.004275

9 1 500 500 0 0 1 000 0.95 · 0.05 · 0.1 · 0.9 = 0.004275

10 1 500 0 500 0 1 000 0.05 · 0.95 · 0.1 · 0.9 = 0.004275

11 1 800 0 0 800 1 000 0.05 · 0.05 · 0.9 · 0.9 = 0.002025

12 1 800 500 500 800 0 0.95 · 0.95 · 0.9 · 0.1 = 0.081225

13 2 000 500 500 0 1 000 0.95 · 0.95 · 0.1 · 0.9 = 0.081225

14 2 300 500 0 800 1 000 0.95 · 0.05 · 0.9 · 0.9 = 0.038475

15 2 300 0 500 800 1 000 0.05 · 0.95 · 0.9 · 0.9 = 0.038475

16 2 800 500 500 800 1 000 0.95 · 0.95 · 0.9 · 0.9 = 0.731025

G G1 G2 G3 G4

f
G

1 p–

p

0



 if x a,=

if x b,=

otherwise,

FYj
 x 

a

b

 if j 1– p x jp,  

otherwise,
=
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The value S in theorem 5.1 is referred to as the dagger cycle length. It should be noted that one random
number from the pseudorandom number generator is used to generate S values of Y.

Example 5.3. To be added…

We have already seen in section 5.1.1 that a negative correlation between input values can result in a
variance reduction compared to simple sampling. We can also easily see that there is a negative correla-
tion between the random values in a dagger cycle, because the diverging unit can never appear more
than once in a dagger cycle. This means that if we know that the j:th value was equal to the diverging
unit then we know that all the other S – 1 values are equal to the conformist unit; hence, the j:th value
and the other values are varying in opposite directions, which is characteristic for a negative correla-
tion.

We can also verify the negative correlation by going back to the mathematical definition. Let us start
by investigating the product of two values in a dagger cycle, i.e., YjYk. There are only two possible values
of this product, aa or ab, since the diverging unit cannot appear more than once in the dagger cycle. We
can also observe that for all dagger transforms there will only be two intervals there either the j:th or the
k:th value of dagger cycle are equal to the diverging unit b; hence, the probability for this result is 2p.
This means that the expectation value of the product is given by

E[YjYk] = 2pab + (1 – 2p)aa. (5.8)

Moreover, we can compute the expectation value of each value as

E[Yj] = E[Yk] = (1 – p)a + pb. (5.9)

The covariance between Yj and Yk can now be computed according to definition 2.10:

Cov[Yj, Yk] = E[YjYk] – E[Yj]E[Yk] = pab + (1 – 2p)aa – ((1 – p)a + pb)2 = –p2(a + b)2 < 0. (5.10)

To be added: Example with figure…

5.2.2 Application

To be added: Introduction…

Multiple Inputs

To be added: Discussion on how to manage inputs with different dagger cycle lengths…

Simulation Procedure

To be added: Overview, equations, block diagram and example…

5.3 Control Variates

To be added: Introduction…

5.3.1 Principle

5.3.2 Application

To be added: Introduction…

Finding a Simplified Model

To be added: Discussion on how to create suitable simplified models…

Simulation Procedure

To be added: Impact on coefficient of variation depending on how the control variate method is imple-
mented…
5.3 Control Variates 27
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To be added: Overview, equations, block diagram and example…

5.4 Correlated Sampling

To be added: Introduction…

5.4.1 Principle

5.4.2 Application

To be added: Introduction…
To be added: Overview, equations, block diagram and example…

5.5 Importance Sampling

To be added: Introduction…

5.5.1 Principle

5.5.2 Application

To be added: Introduction…

Multiple Inputs

To be added: Discussion on how to manage systems with multiple inputs…
To be added: Example showing the computation of the weight factor for a simulationn with multiple

inputs…

Multiple Outputs

To be added: Discussion on how to manage systems with multiple outputs…

Finding an Importance Sampling Function

To be added: Discussion on how to choose the importance sampling function using a simplified model…

Systematical Errors

To be added: Discussion on how inappropriate importance sampling functions can introduce a system-
atical error, and how this sometimes can be acceptable…

Simulation Procedure

To be added: Overview, equations, block diagram and example…

5.6 Stratified Sampling

To be added: Introduction…

5.6.1 Principle

To be added: Description…

Example 5.4 (statistical properties of the strata). Consider a six-sided dice, where two
28 5.4 Correlated Sampling
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sides are labelled “0” and the remaining four sides are labelled “1”. Compare the expecta-
tion value and variance of the entire population compared to the properties of two strata
(one for the two units with the value 0, and another stratum for the remaining units).

Solution: The population in this example can be described as X = {0, 0, 1, 1, 1, 1}, i.e., one
unit per side of the dice. However, in order to reduce the length of the computations, we
can remove duplicates from the population, i.e., let us consider X = {0, 1, 1}. The two strata
are then defined by the subsets X1 = {0} and X2 = {1, 1}. The expectation values and vari-
ances can be computed directly according to the definitions:

E[X] = (0 + 1 + 1)/3 = 2/3,

Var[X] = ((0 – 2/3)2 + (1 – 2/3)2 + (1 – 2/3)2)/3 = 2/9,

E[X1] = 0,

Var[X1] = 0,

E[X2] = (1 + 1)/2 = 1,

Var[X2] = 0.

5.6.2 Application

To be added: Introduction…

Sample Distribution

To be added: Discussion on how to distribute samples between strata…

The Cardinal Error

To be added: Discussion on how the practical application of the Neyman allocation may introduce a sys-
tematical error when sampling duogeneous populations…

The Cum f  Rule

To be added: Discussion on how to design strata using a simplified model…

The Strata Tree

To be added: Discussion on how to design strata using classification of input scenarios…

Simulation Procedure

To be added: Overview, equations (including random number generation), block diagram and exam-
ple…
5.6 Stratified Sampling 29
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Chapter 6

EFFICIENT MONTE CARLO
SIMULATIONS
The previous chapters have presented the mathematics of Monte Carlo simulation as well as some prac-
tical solutions to implement different methods when simulating a technical system. In this concluding
chapter, all those pieces are brought together in a discussion on how to design an efficient Monte Carlo
simulation.

6.1 Mathematical Model

To be added: Discussion on important steps when formulating the mathematical model…

6.2 Choice of Simulation Method

To be added: Summary of the information necessary to efficiently apply different variance reduction
technique.

To be added: Discussion on how variance reduction techniques can be combined.

6.3 Testing

To be added: Discussion on how to test and verify the results of a Monte Carlo simulation…
6.1 Mathematical Model 31
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Appendix A

PROBABILITY DISTRIBUTIONS
This appendix provides an overview of some important probability distributions.
To be added: Reference to other sources.
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Appendix B

AKABUGA DISTRICT
SIMULATION
The simulation methods presented in this compendium are demonstrated in several examples describ-
ing a simulation of the power system in the fictitious East African area Akabuga District. This appendix
provides further details of the Akabuga District simulation, which may help the reader understand the
results of the different simulation strategies.

B.1 Theoretical Analysis

System Data

The values of constant parameters in the model of Akabuga District are listed in table B.1. The probabil-
ity distributions of the inputs are listed below:

= available generation capacity in the large diesel generator set = 

=

= available generation capacity in the large diesel generator set = 

=

= available generation capacity in the large diesel generator set = 

=

= total demand =

f
G1

0.1

0.9

0



 x 0,=

x 200,=

all other x,

f
G2

0.2

0.8

0



 x 0,=

x 150,=

all other x,

f
P

0.01

0.99

0



 x 0,=

x 300,=

all other x,

fDtot

0.2

0.4

0.25

0.1

0.05

0







 x 200,=

x 300,=

x 400,=

x 500,=

x 600,=

all other x,
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Appendix B Akabuga District Simulation
fC = the share of the total demand located in Akabuga =  

Enumeration of Scenarios

Table 

Table B.1 Model constants in the Akabuga District simulation.

Symbol Explanation Value

G1 Variable operation cost of the large diesel generator set 10 ¤/kWh

G2 Variable operation cost of the small diesel generator set 12 ¤/kWh

L Loss coefficient for the transmission line 0.00005 kW–1

Available generation capacity in the hydro power plant 350 kWh/h

Table B.2 Outputs in the Akabuga District simulation.

Symbol Explanation

D1 Load in Akabuga [kWh/h]

D2 Load in Ekyaalo [kWh/h]

G1 Generation in the large diesel generator set [kWh/h]

G2 Generation in the small diesel generator set [kWh/h]

H Generation in the hydro power plant [kWh/h]

LOLO Loss of load occasion (1 if load shedding occurs, 0 otherwise)

P Transmission from Ekyaalo to Akabuga [kWh/h]

TOC Total operation cost of the system [¤/h]

U Unserved load [kWh/h]

Table B.3 Enumeration of scenarios in the Akabuga District simulation.

Scenario Dtot D1 D2 TOC LOLO fY fY·TOC fY·LOLO

1 0 0 0 200 170 30 0 1 0.000 020 0 0.000 020

2 0 0 0 200 180 20 0 1 0.000 020 0 0.000 020

3 0 0 0 300 255 45 0 1 0.000 040 0 0.000 040

4 0 0 0 300 270 30 0 1 0.000 040 0 0.000 040

5 0 0 0 400 340 60 0 1 0.000 025 0 0.000 025

6 0 0 0 400 360 40 0 1 0.000 025 0 0.000 025

7 0 0 0 500 425 75 0 1 0.000 010 0 0.000 010

8 0 0 0 500 450 50 0 1 0.000 010 0 0.000 010

9 0 0 0 600 510 90 0 1 0.000 005 0 0.000 005

10 0 0 0 600 540 60 0 1 0.000 005 0 0.000 005

11 0 0 150 200 170 30 1 800.00 1 0.000 080 0.1440 0.000 080

12 0 0 150 200 180 20 1 800.00 1 0.000 080 0.1440 0.000 080

13 0 0 150 300 255 45 1 800.00 1 0.000 160 0.2880 0.000 160

14 0 0 150 300 270 30 1 800.00 1 0.000 160 0.2880 0.000 160

15 0 0 150 400 340 60 1 800.00 1 0.000 100 0.1800 0.000 100

16 0 0 150 400 360 40 1 800.00 1 0.000 100 0.1800 0.000 100

17 0 0 150 500 425 75 1 800.00 1 0.000 040 0.0720 0.000 040

18 0 0 150 500 450 50 1 800.00 1 0.000 040 0.0720 0.000 040

19 0 0 150 600 510 90 1 800.00 1 0.000 020 0.0360 0.000 020

20 0 0 150 600 540 60 1 800.00 1 0.000 020 0.0360 0.000 020

0.5

0.5

0



 x 0.85,=

x 0.9,=

all other x.

H

P G1 G2
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21 0 200 0 200 170 30 1 700.00 0 0.000 180 0.3060 0

22 0 200 0 200 180 20 1 800.00 0 0.000 180 0.3240 0

23 0 200 0 300 255 45 2 000.00 1 0.000 360 0.7200 0.000 360

24 0 200 0 300 270 30 2 000.00 1 0.000 360 0.7200 0.000 360

25 0 200 0 400 340 60 2 000.00 1 0.000 225 0.4500 0.000 225

26 0 200 0 400 360 40 2 000.00 1 0.000 225 0.4500 0.000 225

27 0 200 0 500 425 75 2 000.00 1 0.000 090 0.1800 0.000 090

28 0 200 0 500 450 50 2 000.00 1 0.000 090 0.1800 0.000 090

29 0 200 0 600 510 90 2 000.00 1 0.000 045 0.0900 0.000 045

30 0 200 0 600 540 60 2 000.00 1 0.000 045 0.0900 0.000 045

31 0 200 150 200 170 30 1 700.00 0 0.000 720 1.2240 0

32 0 200 150 200 180 20 1 800.00 0 0.000 720 1.2960 0

33 0 200 150 300 255 45 2 660.00 0 0.001 440 3.8304 0

34 0 200 150 300 270 30 2 840.00 0 0.001 440 4.0896 0

35 0 200 150 400 340 60 3 680.00 0 0.000 900 3.3120 0

36 0 200 150 400 360 40 3 800.00 1 0.000 900 3.4200 0.000 900

37 0 200 150 500 425 75 3 800.00 1 0.000 360 1.3680 0.000 360

38 0 200 150 500 450 50 3 800.00 1 0.000 360 1.3680 0.000 360

39 0 200 150 600 510 90 3 800.00 1 0.000 180 0.6840 0.000 180

40 0 200 150 600 540 60 3 800.00 1 0.000 180 0.6840 0.000 180

41 300 0 0 200 170 30 0 0 0.001 980 0 0

42 300 0 0 200 180 20 0 0 0.001 980 0 0

43 300 0 0 300 255 45 0 0 0.003 960 0 0

44 300 0 0 300 270 30 0 0 0.003 960 0 0

45 300 0 0 400 340 60 0 1 0.002 475 0 0.002 475

46 300 0 0 400 360 40 0 1 0.002 475 0 0.002 475

47 300 0 0 500 425 75 0 1 0.000 990 0 0.000 990

48 300 0 0 500 450 50 0 1 0.000 990 0 0.000 990

49 300 0 0 600 510 90 0 1 0.000 495 0 0.000 495

50 300 0 0 600 540 60 0 1 0.000 495 0 0.000 495

51 300 0 150 200 170 30 0 0 0.007 920 0 0

52 300 0 150 200 180 20 0 0 0.007 920 0 0

53 300 0 150 300 255 45 0 0 0.015 840 0 0

54 300 0 150 300 270 30 0 0 0.015 840 0 0

55 300 0 150 400 340 60 650.46 0 0.009 900 6.4396 0

56 300 0 150 400 360 40 774.00 0 0.009 900 7.6626 0

57 300 0 150 500 425 75 1 800.00 1 0.003 960 7.1280 0.003 960

58 300 0 150 500 450 50 1 800.00 1 0.003 960 7.1280 0.003 960

59 300 0 150 600 510 90 1 800.00 1 0.001 980 3.5640 0.001 980

60 300 0 150 600 540 60 1 800.00 1 0.001 980 3.5640 0.001 980

61 300 200 0 200 170 30 0 0 0.017 820 0 0

62 300 200 0 200 180 20 0 0 0.017 820 0 0

63 300 200 0 300 255 45 0 0 0.035 640 0 0

64 300 200 0 300 270 30 0 0 0.035 640 0 0

65 300 200 0 400 340 60 542.05 0 0.022 275 12.0742 0

66 300 200 0 400 360 40 645.00 0 0.022 275 14.0742 0

67 300 200 0 500 425 75 1 537.81 0 0.008 910 13.7019 0

68 300 200 0 500 450 50 1 545.00 0 0.008 910 13.7660 0

Table B.3 Enumeration of scenarios in the Akabuga District simulation.

Scenario Dtot D1 D2 TOC LOLO fY fY·TOC fY·LOLOP G1 G2
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B.2 Simulation Code

69 300 200 0 600 510 90 2 000.00 1 0.004 455 8.9100 0.004 455

70 300 200 0 600 540 60 2 000.00 1 0.004 455 8.9100 0.004 455

71 300 200 150 200 170 30 0 0 0.071 280 0 0

72 300 200 150 200 180 20 0 0 0.071 280 0 0

73 300 200 150 300 255 45 0 0 0.142 560 0 0

74 300 200 150 300 270 30 0 0 0.142 560 0 0

75 300 200 150 400 340 60 542.05 0 0.089 100 48.2967 0

76 300 200 150 400 360 40 645.00 0 0.089 100 57.4695 0

77 300 200 150 500 425 75 1 537.81 0 0.035 640 54.8076 0

78 300 200 150 500 450 50 1 545.00 0 0.035 640 55.0638 0

79 300 200 150 600 510 90 2 640.56 0 0.017 820 47.0548 0

80 300 200 150 600 540 60 2 650.46 0 0.017 820 47.2312 0

Table B.3 Enumeration of scenarios in the Akabuga District simulation.

Scenario Dtot D1 D2 TOC LOLO fY fY·TOC fY·LOLOP G1 G2
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Appendix C

PROBABILISTIC PRODUCTION
COST SIMULATION
This appendix provides a short overview of probabilistic production cost simulation, which is an analyt-
ical model for calculation of the operation cost and reliability of power systems. The model used in this
simulation method is rather limited, but it can be used to generate control variates for more detailed
electricity market simulation (such as in the example of Akabuga District). Further details on probabil-
istic production cost simulation can be found in the literature listed at the end of the appendix.

Further reading

• H. Baleriaux, E. Jamoulle & F. Linard de Guertechin, “Simulation de l’explittion d’un parc de
machines thermiques de production d’électricité couplé à des stations de pompage”, Extrait de la
revue E (édition S.R.B.E), Vol. 5, No. 7, 1967.

• R. R. Booth, “Power System Simulation Model Based on Probability Analysis”, IEEE Transac-
tions on Power Apparatus & Systems, Vol. PAS-91, No. 1, January/February 1972.

• L. Söder & M. Amelin, “Efficient Operation and Planning of Power Systems”, course compen-
dium, Royal Institute of Technology (KTH), Stockholm 2003–2015.
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SOLUTIONS TO EXERCISES
2.1

a) All values between 10 and 20 are equally probable; thus, this is a heterogeneous population.

b) The values 10, 11, …, 20 are equally probable; thus, this is a heterogeneous population.

c) Only the values 10 and 20 are possible; however, the value 10 has a probability of 60%. Hence, this
random variable corresponds to a population where 60% of the units have the value 10 and the remain-
der of the units correspond to the value 20. Hence, this is a duogeneous population, where the units
with the value 10 are the conformist units and the other units are the diverging units.

d) All values between 10 and 20 are possible; however, the value 10 has a probability of 60%. Hence, this
random variable corresponds to a population where 60% of the units have the value 10 and the remain-
der of the units correspond to all values larger than 10 and smaller or equal to 20. Hence, this is a duo-
geneous population, where the units with the value 10 are the conformist units and the other units are
the diverging units.

e) All values between 10 and 20 are possible and although values between 10 and 12 are more probable
there is no particular value that is dominating, which means that we cannot identify a set of conformist
units. Hence, this is a heterogeneous population.
2.1-2.1 35


