An example of the Method of Characteristics.

John Andersson johnan@kth.se

Example.

1. Find the solution $u(x, y) \in C^{1}(D)$ to

$$
\begin{array}{ll}
y u(x, y) \frac{\partial u(x, y)}{\partial x}+\frac{\partial u(x, y)}{\partial y}=y u(x, y) & \text { in } D \tag{1}\\
u(s, 0)=-s & \text { for } s \in(-\infty, \infty)
\end{array}
$$

where $D=(-\infty, \infty) \times(-1,1)$.
2. Sketch the projected characteristics corresponding to the initial value problem (1). Show that, and explain why, you can not find a solution in $\tilde{D}=(-\infty, \infty) \times(-2,2)$. Which is the largest set where you can find a solution?

Solution.

1. The characteristic equations are

$$
\begin{array}{ll}
\frac{d x(t ; s)}{d t}=y(t ; s) z(t ; s) & \text { and } x(0 ; s)=s \\
\frac{d y(t ; s)}{d t}=1 & \text { and } y(0 ; s)=0 \\
\frac{d z(t ; s)}{d t}=y(t ; s) z(t ; s) & \text { and } z(0 ; s)=-s .
\end{array}
$$

From the second characteristic equation we immediately see that $y(t ; s)=$ t. The third characteristic equation becomes

$$
\frac{d z(t ; s)}{d t}=t z(t ; s)
$$

with solution

$$
\begin{equation*}
z(t ; s)=-s e^{\frac{t^{2}}{2}} \tag{2}
\end{equation*}
$$

The first equation then becomes

$$
\frac{\partial x(t ; s)}{\partial t}=-s t e^{\frac{t^{2}}{2}}
$$

with solution

$$
x(t ; s)=-s e^{\frac{t^{2}}{2}}+\text { function in } s
$$

Comparing with the initial data we see that

$$
\begin{equation*}
x(t ; s)=-s e^{\frac{t^{2}}{2}}+2 s . \tag{3}
\end{equation*}
$$

We need to calculate $u(x, y)=z(t(x, y) ; s(x, y))$, in particular we need to find $t(x, y)$ and $s(x, y)$. We already know that $t(x, y)=y$. To calculate $s(x, y)$ we use (3) and see

$$
x=-s e^{\frac{y^{2}}{2}}+2 s=\left(2-e^{\frac{y^{2}}{2}}\right) s .
$$

That is

$$
s=\frac{x}{2-e^{\frac{y^{2}}{2}}} .
$$

So our solution is, using (2) and the expressions for s and t,

$$
u(x, y)=z(t ; s)=-s e^{\frac{t^{2}}{2}}=-\frac{x e^{\frac{y^{2}}{2}}}{2-e^{\frac{y^{2}}{2}}}
$$

2. The projected characteristics $P C_{s}$ are defined

$$
\begin{gathered}
C C_{s}=\{(x(t ; s), y(t ; s)) ; t \in(-\alpha, \alpha)\}= \\
\left\{\left(-s e^{\frac{t^{2}}{2}}+2 s, t\right) ; t \in(-\alpha, \alpha)\right\} .
\end{gathered}
$$

Plotting a few characteristics we get the following diagram:

We notice that all characteristics merge at the points $x=0$ and $y=$ $\pm \sqrt{2 \ln (2)}$. In particular,

$$
x\left(\pm \sqrt{2 \ln (2)} ; s_{1}\right)=x\left(\pm \sqrt{2 \ln (2)} ; s_{2}\right)
$$

for all $s_{1}, s_{2} \in \mathbb{R}$. Since we can only calculate our solution on the projected characteristics we can not calculate the solution beyond $t= \pm \sqrt{2 \ln (2)}$, that is for $y \notin(-\sqrt{2 \ln (2)}, \sqrt{2 \ln (2)})$.

From the calculation of $u(x, y)$ we also see that

$$
\lim _{y \rightarrow \pm \sqrt{2 \ln (2)}}|u(x, y)|=\infty
$$

for $x \neq 0$ so it is impossible to extend the solution in any connected domain containing the lines $y= \pm \sqrt{2 \ln (2)}$.

