Theory of PDE, Examples Sheet 1

John Andersson j.e.andersson@warwick.ac.uk

1. Find the solution to the following first order PDE

$$
\begin{array}{ll}
3 \frac{\partial u(x, y)}{\partial x}+2 \frac{\partial u(x, y)}{\partial y}=x^{2} & \text { in } \mathbb{R}^{\nvdash} \\
u(s, 0)=\sin (s) & \text { for all } s \in \mathbb{R}
\end{array}
$$

2. Suppose that $u(x, y)=x \cos (y)$ show that

$$
\frac{d u\left(s, s^{2}\right)}{d s}=\frac{\partial u}{\partial x}\left(s, s^{2}\right)+2 s \frac{\partial u}{\partial y}\left(s, s^{2}\right)=\cos \left(s^{2}\right)-2 s^{2} \sin \left(s^{2}\right)
$$

3. Sketch the curves $(x(s), y(s))$ in \mathbb{R}^{2} when
a) $x(s)=s$ and $y(s)=\sin (s)$ for $s \in(-2,5)$,
b) $x(s)=s|s|$ and $y(s)=s^{3}$ for $s \in(-5,5)$,
c) $x(s)=s^{2}$ and $y(s)=s^{3}$ for $s \in(-5,5)$.
4.

a) Solve the following initial value problem

$$
\begin{aligned}
& \frac{\partial u}{\partial x}+3 x^{2} \frac{\partial u}{\partial y}=1, \\
& u(x, 0)=h(x) \quad h \in C^{1}(\mathbb{R}), \quad u \in C^{1}\left(\mathbb{R}^{2}\right) .
\end{aligned}
$$

b) Show that, and explain why, the problem

$$
\begin{aligned}
& \frac{\partial u}{\partial x}+3 x^{2} \frac{\partial u}{\partial y}=1, \\
& u\left(s, s^{3}\right)=1
\end{aligned} \quad h \in C^{1}(\mathbb{R}), u \in C^{1}\left(\mathbb{R}^{2}\right)
$$

has no solution.
c) Show that, and explain why, the problem

$$
\begin{aligned}
& \frac{\partial u}{\partial x}+3 x^{2} \frac{\partial u}{\partial y}=1, \\
& u\left(s, s^{3}\right)=s-1 \quad h \in C^{1}(\mathbb{R}), \quad u \in C^{1}\left(\mathbb{R}^{2}\right),
\end{aligned}
$$

Infinitely many solutions.
5. Solve the following initial value problems and verify your solutions:
a) $u_{x}+u_{y}=u^{2}$ and $u(x, 0)=h(x)$,
b) $u_{y}=\frac{u_{x}}{(1-u)(1-y)}$ and $u(x, 0)=x$,
c) (Difficult) $x u_{x}+y u_{y}+u_{z}=u$ and $u(x, y, 0)=h(x, y)$.

Here $u_{x}=\frac{\partial u}{\partial x}$ etc..
(HINT: In part c) you encounter a first order PDE in \mathbb{R}^{3} for the first time.
That is $u=u(x, y, z)$. The characteristic equations in \mathbb{R}^{3} for the equation

$$
a(x, y, z) \frac{\partial u}{\partial x}+b(x, y, z, u) \frac{\partial u}{\partial x}+c(x, y, z, u) \frac{\partial u}{\partial x}=d(x, y, z, u)
$$

with initial data $u\left(f\left(s_{1}, s_{2}\right), g\left(s_{1}, s_{2}\right), h\left(s_{1}, s_{2}\right)\right)=l\left(s_{1}, s_{2}\right)$ are given by:

$$
\begin{array}{ll}
\frac{d x\left(t ; s_{1}, s_{2}\right)}{d t}=a(x, y, z, w) & x\left(0, s_{1}, s_{2}\right)=f\left(s_{1}, s_{2}\right) \\
\frac{d y\left(t ; s_{1}, s_{2}\right)}{d t}=b(x, y, z, w) & y\left(0, s_{1}, s_{2}\right)=g\left(s_{1}, s_{2}\right) \\
\frac{d z\left(t ; s_{1}, s_{2}\right)}{d t}=c(x, y, z, w) & z\left(0, s_{1}, s_{2}\right)=h\left(s_{1}, s_{2}\right) \\
\frac{d w\left(t s_{1}, s_{2}\right)}{d t}=d(x, y, z, w) & x\left(0, s_{1}, s_{2}\right)=l\left(s_{1}, s_{2}\right),
\end{array}
$$

where $\left.w\left(t ; s_{1}, s_{2}\right)=u\left(x\left(t ; s_{1}, s_{2}\right), y\left(t ; s_{1}, s_{2}\right), z\left(t ; s_{1}, s_{2}\right)\right).\right)$
6.
a) Solve the equation

$$
\begin{align*}
& u u_{x}+u_{y}=-u \quad \text { in } D=\{(x, y) ; x \in \mathbb{R}, y>0\} \tag{1}\\
& u(x, 0)=h(x) .
\end{align*}
$$

(Note: The solution can only be given in implicit form.)
b) Show that if $h(x)>0$ for all $x \in \mathbb{R}$ then, for each $s \in \mathbb{R}$, the curve

$$
y_{s}(x)=\log \left(\frac{h(s)}{h(s)+s-x}\right), \quad s \leq x \leq s+h(x)
$$

is a characteristic projection for the equation (1).

