Theory of PDE, Examples Sheet 2

John Andersson johnan@kth.se

1. Consider the following PDE

$$
\begin{equation*}
\frac{\partial u(x, y)}{\partial x}=0 \tag{1}
\end{equation*}
$$

a) Find the characteristics and projected characteristics corresponding to (1) when the initial data is given by

$$
\begin{equation*}
u(0, y)=h(y) . \tag{2}
\end{equation*}
$$

Find the solution, u.
b) Find the projected characteristics corresponding to (1) when the initial data is given by

$$
\begin{equation*}
u(x, 0)=\tilde{h}(x) \tag{3}
\end{equation*}
$$

Show that the initial line $\{(f(s), g(s))=(s, 0) ; s \in(-\infty, \infty)\}$ is a projected characteristic.

Prove that we have no solutions to (1) with initial conditions (3) unless $\tilde{h}(x)=c$.
c) Assume that $\tilde{h}=c=$ constant in part b). Show that any solution to (1) with initial conditions (2) is also a solution to (1) with initial conditions (3) as long as $h(0)=c$. Conclude that b) has infinitely many solutions.
2. Consider Burger's equations

$$
\begin{array}{ll}
u u_{x}+u_{y}=0 & \text { in } \mathbb{R}^{2} \\
u(x, 0)=h(x) & \text { for } x \in(-\infty, \infty)
\end{array}
$$

Assume furthermore that $h(1)=4$ and $h(2)=1$.
Find the point $\left(x^{0}, y^{0}\right)$ where the projected characteristics $P C_{1}$ and $P C_{2}$ intersect. Show that $\lim _{(x, y) \rightarrow\left(x^{0}, y^{0}\right)} u(x, y)$ does not exist and thus that $u \notin$ $C\left(\mathbb{R}^{2}\right)$.
3. Continuation of 6 . on sheet 1 .
a) Still assuming that $h>0$, plot a typical characteristic projection from part b) of question 6 on sheet 1 .
b) Assume furthermore that $h^{\prime}(s)>-1$ for all $s \in \mathbb{R}$ and show that the projected characteristics do not intersect each other. Conclude that the solution exist for all $y>0$.
c) Show that $\lim _{y \rightarrow \infty} u(x, y)=0$ for each x.
4. Let $F(t, y(t)): \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a function satisfying for all $s \in \mathbb{R}$ and some L :

$$
|F(s, p)-F(s, q)| \leq L|p-q|
$$

Furthermore let $y(t):(-\epsilon, \epsilon) \rightarrow \mathbb{R}^{n}$ be a solution to the equation

$$
y(t)=y_{0}+\int_{0}^{t} F(s, y(s)) d s
$$

a) Show that $y(t) \in C((-\epsilon, \epsilon))$.
(Hint: What is $\left|y\left(t_{1}\right)-y\left(t_{2}\right)\right|$.)
b) Show that $y(t) \in C^{1}((-\epsilon, \epsilon))$.
5. A function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfying the condition $|F(p)-F(q)| \leq L|p-q|$ for some constant L is called Lipschitz with constant L.

Show that $F(p)$ is Lipschitz in the convex set $\Omega \subset \mathbb{R}^{n}$ when
a) $F(p)=4|p|$.
b) $F(p) \in C^{1}(\bar{\Omega})$. (Hint: The mean value Theorem together with the fact that a function that is continuous in a closed set is bounded might be useful.)
6. Show that the following ODE has a solution close to the point $(s, t)=$ $(0,0)$

$$
\begin{array}{ll}
\frac{d x(t ; s)}{d t}=\tan \left(e^{-x}\right) & \\
\frac{d y(t ; s)}{d t}=\arctan \left(1+x^{2}\right) & \\
\text { and } y(0 ; s)=s \\
\frac{\text { ar }}{}(0 ; s)=0
\end{array}
$$

7. Consider the PDE

$$
\begin{array}{ll}
3 \frac{\partial u(x)}{\partial x}+2 \frac{\partial u(x, y)}{\partial y}=0 & \text { in } \Omega \\
u(x, 0)=\frac{1}{1+\left|x^{2}\right|} & \text { on the line } y=0
\end{array}
$$

Find an equation for the curve \mathcal{B} where the solution blows-up.
8. In the first paragraph of the proof that $p \in C^{1}$ in the proof of Theorem 2 there is a statement:
...we will show that there exists a function $w\left(t ; s_{0}\right)$ such that

$$
\left|p(t ; s)-p\left(t ; s_{0}\right)-\left(s_{0}\right) p_{0}^{\prime}\left(s-s_{0}\right) w\left(t ; s_{0}\right)\right|=o\left(\left|s-s_{0}\right|\right)
$$

for each t. Then it follows that $\frac{\partial p(t ; s)}{\partial s}$ is continuous.

In this exercise we will show that this is indeed the case. Let $f(x)$ be any continuous function and assume that there exists a continuous function $\sigma(\delta)>0$ such that $\lim _{\delta \rightarrow 0^{+}} \sigma(\delta)=0^{1}$ and that there for each x exists a number $d(x)$ such that

$$
\begin{equation*}
|f(x)-f(y)-d(x)(x-y)| \leq \sigma(|x-y|)|x-y| . \tag{4}
\end{equation*}
$$

1. Show that this implies that f is differentiable and that $f^{\prime}(x)=d(x)$.
2. Show that $d(x)$ is continuous and f is therefore in C^{1}.

Hint: Assume the contrary that there exists a sequence $x^{j} \rightarrow x^{0}$ such that $d\left(x^{j}\right) \nrightarrow d\left(x^{0}\right)$. Draw the picture of the situation using the assumption (4).
3. COnvince yourself that Theorem 2 is true.

9: Assume that f is a function such that $f \in C^{1}\left(\mathbb{R}^{2}\right), \nabla f(x, y)=(a(x, y), b(x, y))$ and $|\nabla f| \neq 0$. Prove that any solution u to the partial differential equation

$$
a(x, y) \frac{\partial u(x, y)}{\partial x}+b(x, y) \frac{\partial u(x, y)}{\partial y}=0
$$

can be written as $u(x, y)=G(f(x, y))$ for some function $G: \mathbb{R} \mapsto \mathbb{R}$.

[^0]
[^0]: ${ }^{1}$ Such a function is called a modulus of continuity.

