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Theory of PDE, Examples Sheet 2

John Andersson johnan@kth.se

1. Consider the following PDE

∂u(x, y)

∂x
= 0. (1)

a) Find the characteristics and projected characteristics corresponding to
(1) when the initial data is given by

u(0, y) = h(y). (2)

Find the solution, u.

b) Find the projected characteristics corresponding to (1) when the initial
data is given by

u(x, 0) = h̃(x). (3)

Show that the initial line
{(
f(s), g(s)

)
= (s, 0); s ∈ (−∞,∞)

}
is a projected

characteristic.
Prove that we have no solutions to (1) with initial conditions (3) unless

h̃(x) = c.

c) Assume that h̃ = c =constant in part b). Show that any solution to (1)
with initial conditions (2) is also a solution to (1) with initial conditions (3) as
long as h(0) = c. Conclude that b) has infinitely many solutions.

2. Consider Burger’s equations

uux + uy = 0 in R2

u(x, 0) = h(x) for x ∈ (−∞,∞).

Assume furthermore that h(1) = 4 and h(2) = 1.
Find the point (x0, y0) where the projected characteristics PC1 and PC2

intersect. Show that lim(x,y)→(x0,y0) u(x, y) does not exist and thus that u /∈
C(R2).

3. Continuation of 6. on sheet 1.
a) Still assuming that h > 0, plot a typical characteristic projection from

part b) of question 6 on sheet 1.

b) Assume furthermore that h′(s) > −1 for all s ∈ R and show that the
projected characteristics do not intersect each other. Conclude that the solution
exist for all y > 0.
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c) Show that limy→∞ u(x, y) = 0 for each x.

4. Let F (t, y(t)) : R×Rn → Rn be a function satisfying for all s ∈ R and some
L:

|F (s, p)− F (s, q)| ≤ L|p− q|.

Furthermore let y(t) : (−ε, ε)→ Rn be a solution to the equation

y(t) = y0 +

∫ t

0

F (s, y(s))ds.

a) Show that y(t) ∈ C((−ε, ε)).
(Hint: What is |y(t1)− y(t2)|.)

b) Show that y(t) ∈ C1((−ε, ε)).

5. A function F : Rn → Rn satisfying the condition |F (p)−F (q)| ≤ L|p− q|
for some constant L is called Lipschitz with constant L.

Show that F (p) is Lipschitz in the convex set Ω ⊂ Rn when

a) F (p) = 4|p|.

b) F (p) ∈ C1(Ω). (Hint: The mean value Theorem together with the fact
that a function that is continuous in a closed set is bounded might be useful.)

6. Show that the following ODE has a solution close to the point (s, t) =
(0, 0)

dx(t;s)
dt = tan(e−x) and x(0; s) = s

dy(t;s)
dt = arctan(1 + x2) and y(0; s) = 0.

7. Consider the PDE

3∂u(x)∂x + 2∂u(x,y)∂y = 0 in Ω

u(x, 0) = 1
1+|x2| on the line y = 0.

Find an equation for the curve B where the solution blows-up.

8. In the first paragraph of the proof that p ∈ C1 in the proof of Theorem
2 there is a statement:

...we will show that there exists a function w(t; s0) such that

|p(t; s)− p(t; s0)− (s0)p′0(s− s0)w(t; s0)| = o(|s− s0|)

for each t. Then it follows that ∂p(t;s)
∂s is continuous.
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In this exercise we will show that this is indeed the case. Let f(x) be any
continuous function and assume that there exists a continuous function σ(δ) > 0
such that limδ→0+ σ(δ) = 01 and that there for each x exists a number d(x) such
that

|f(x)− f(y)− d(x)(x− y)| ≤ σ(|x− y|)|x− y|. (4)

1. Show that this implies that f is differentiable and that f ′(x) = d(x).

2. Show that d(x) is continuous and f is therefore in C1.

Hint: Assume the contrary that there exists a sequence xj → x0 such that
d(xj) 6→ d(x0). Draw the picture of the situation using the assumption
(4).

3. COnvince yourself that Theorem 2 is true.

9: Assume that f is a function such that f ∈ C1(R2),∇f(x, y) = (a(x, y), b(x, y))
and |∇f | 6= 0. Prove that any solution u to the partial differential equation

a(x, y)
∂u(x, y)

∂x
+ b(x, y)

∂u(x, y)

∂y
= 0

can be written as u(x, y) = G(f(x, y)) for some function G : R 7→ R.

1Such a function is called a modulus of continuity.


