
Last lecture (2) 
• Plasma physics 2  

• Solar activity 

Today’s lecture (3) 
• Solar activity  

• Magnetic reconnection ↔ solar flares  

• Solar wind – basic facts 



Today 

L = Lecture, T = Tutorial 
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Activity Date Time Room Subject Litterature 

L1 31/8 13-15 V22 Course description, Introduction, The 
Sun 1, Plasma physics 1 

CGF Ch 1, 5, (p 110-
113) 

L2 3/9 15-17 Q36 The Sun 2, Plasma physics 2  CGF Ch 5 (p 114-
121), 6.3 

L3 7/9 13-15 Q36 Solar wind, The ionosphere and 
atmosphere 1, Plasma physics 3 

CGF  Ch 6.1, 2.1-
2.6, 3.1-3.2, 3.5,   LL 
Ch III, Extra material 

T1 10/9 15-17 Q36 Mini-group work 1   
L4 14/9 13-15 E2 The ionosphere 2, Plasma physics 4 CGF Ch 3.4, 3.7, 3.8  
T2 17/9 8-10 Q31 Mini-group work 2   
L5 17/9 15-17 L52 The Earth’s magnetosphere 1, Plasma 

physics 5 
CGF 4.1-4.3, LL Ch 
I, II, IV.A 

L6 21/9 13-15 L52 The Earth’s magnetosphere 2, Other 
magnetospheres 

CGF Ch 4.6-4.9, LL 
Ch V. 

T3 24/9 16-18 Q36 Mini-group work 3   
L7 28/9 13-15 Q36 Aurora, Measurement methods in space 

plasmas and data analysis 1 
CGF Ch 4.5, 10, LL 
Ch VI, Extra 
material 

T4 1/10 15-17 V22 Mini-group work 4   
L8 5/10 13-15 M33 Space weather and geomagnetic storms CGF Ch 4.4, LL Ch 

IV.B-C, VII.A-C 
L9 6/10 8-10 Q36 Interstellar and intergalactic plasma, 

Cosmic radiation,  
CGF Ch 7-9 

T5 8/10 15-17 Q34 Mini-group work 5   

L10 12/10 13-15 Q36 Swedish and international space physics 
research. 

  

T6 15/10 15-17 Q33 Round-up.    

Written 
examination 

28/10 8-13 Q21, 
Q26 

    



q= ×F v B

F
, 

Magnetized plasma  
 
Extremely common in space. 
 
In single particle description of 
plasma, the particles gyrate in 
the plane perpendicular to B. 
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Gyro motion 

EF2240 Space Physics 2015 

Consider a positively charged particle in a 
magnetic field. 

Assume that the magnetic field is in the z-
direction. 

Constant velocity along z 

y 

x 
B = B z 

+ 
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Gyro motion 

and 
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Gyro motion 

y 
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B = B z 
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and 

So 



EF2240 Space Physics 2015 

Then (because the force is all the time perpendicular to the velocity) 

Gyro motion 
y 

x 

B = B z 
+ 

v⊥ 
so 

So 

and 



Gyro motion 
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Gyro radius 

q ⊥= ×F v BMagnetic force: 

2

ˆmv
ρ

⊥=F ρCentripetal force: 

⇔

mv
qB

ρ ⊥=

B v 

α 

sinv v α⊥ = ⋅

v⊥ 
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Gyro frequency 

⇒

g
qB
m

ω =

mv
qB

ρ ⊥=

vωρ ⊥=

2 fω π=
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Gyro motion 
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Equipartion principle 
Statistically the kinetic energy is 
equally distributed along the three 
dimensions: 

 



Maxwell’s equations 
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Field transformations (relativistic) 

Relativistic transformations 
(perpendicular to the velocity u): 

x 

y 
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induced 
electric field 
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Frozen in magnetic flux PROOF 
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Frozen in magnetic flux PROOF II 
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Order of magnitude estimate: 
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Magnetic Reynolds number Rm: 

Rm >> 1 ⇒ ( )
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Frozen-in fields! 

Diffusion equation! 
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Frozen in magnetic flux PROOF III 

Rm >> 1 ⇒ ( )
t

∂
= ∇× ×

∂
B v B

Consider the change of magnetic 
flux Φ through a surface S with 
contour l which follows plasma 
motion 

S 
B 
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∂∫
B S

S
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cd
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Φ This term is due to change in 

the surface S due to plasma 
motion  

l has an area of ( )dt d⋅ ×v l

The flux through      is ( )dt d⋅ × ⋅v l B
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Frozen in magnetic flux PROOF IV 
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Frozen in magnetic field lines 

A  flux tube is defined by following B 
from the surface S. Due to the frozen-
in theorem the flux tube keeps its 
identity and the plasma in a flux tube 
stays in it for ever. 

In particular if we let the tube become 
infinitely thin we have the theorem of 
frozen-in field lines. 
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Magnetized plasma 

Different plasma populations (plasmas 
with different temperature and density) 
keep to their own field line, and thus 
“paint out” the magnetic field lines. 

So
la

r m
ag

ne
tic

 fi
el

d 
Northern lights (aurora) 

Coronal loop 
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Sunspots 
Often seen in 
pairs ~4000 K 

~6000 K 

Umbra 

Penumbra 
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Sunspots and magnetic fields 

Sunspots are associated with large magnetic fields 

Visible light Magnetogram 
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Sunspots and magnetic fields 
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Sunspots and magnetic fields 
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Sunspots 

One theory is that the large magnetic field in the sunpots 
affects the convection of hot matter from the solar interior, so 
that it will not reach the surface. 
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Sunspot cycle (solar cycle) 

• T ≈ 11 ± 1 years 
 

• The solar cycle is 
a manifestation of 
the changing 
solar magnetic 
field 
 

• The Maunder 
minimum was 
associated with 
cold climate and 
no aurora. 
 

Maunder minimum 

gband_pd_15Jul2002_short_wholeFOV.mpeg
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http://www.hao.ucar.edu/public/education/slides/slide17.jpeg


Solar magnetic field as organizing factor 

Maximum Minimum 

Maximum: weak, irregular magnetic field 

B B 
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Minimum: large, regular dipole-like field 

http://www.hao.ucar.edu/public/education/slides/slide20.jpeg
http://www.hao.ucar.edu/public/education/slides/slide9.jpeg
http://www.hao.ucar.edu/public/education/slides/slide9.jpeg
http://www.hao.ucar.edu/public/education/slides/slide10.jpeg
http://www.hao.ucar.edu/public/education/slides/slide10.jpeg


Where are we today? 
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http://services.swpc.noaa.gov/images/solar-cycle-sunspot-number.gif


Think about this 

How can we measure the magnetic field on 
the solar surface??? 
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Zeeman effect: 
In the presence of a magnetic field 
electron orbits with different angular 
momentum will interact with B in slightly 
different ways. Thus the energy levels 
will split up. The larger B, the larger 
split. 
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µ = IA 
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Solar activity in general 

On the solar 
surface there are 
various dynamical 
irregularities and 
structures.  
 
These are given 
the general name 
”solar activity” or 
”active regions”. 

Magnetograms during a solar cycle 
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Active regions 

• Sunspots:  
B ~ 100 – 400 mT 
 

• Plages:  
B ~ 10 – 50 mT  
 

• Rest of solar 
surface:  
B ~ 0,1 – 0,3 mT 
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Prominences 

When viewed from above they are 
called “filaments” 

Viewed from the side:  prominences 

Possibly they are hotter plasma, their lower density to give them buoyancy, 
But most theories consider them to be colder material, supported by magnetic field lines. 
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Prominences 

Prominences are 
often observed at 
the border 
between regions 
of different 
magnetic 
polarity. 
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Interpretation: street of coronal loops along the border between polarities 

EF2240 Space Physics 2015 

P
ro

m
in

en
ce

s 
=

 f
ila

m
en

ts
 

Alternatively: one single, 
large loop makes up the 
prominence/filament. 



Think about this: 
Plasma can only move 
along field lines. Due to 
gravity a plasma element 
at the top will ”fall down” 
from the top by the 
slightest disturbance. 

Can you think of a slight 
modification of the field 
line which may support 
the plasma element in a 
stable way? 
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B 

Solar surface 



Think about this: 
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Solar surface 

B 

B 

Solar surface 
Kippenhahn-Schlüter model 

Kuperus-Raadu model 

http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?bibcode=1990ApJ...361..283V&db_key=AST&page_ind=2&data_type=GIF&type=SCREEN_VIEW&classic=YES
http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?bibcode=1990ApJ...361..283V&db_key=AST&page_ind=2&data_type=GIF&type=SCREEN_VIEW&classic=YES


Erupting prominces 

Sometimes the 
prominences 
may go unstable 
and release the 
energy stored in 
the magnetic 
fields. 

Twisted magnetic field lines store additional energy 
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Coronal mass ejections – CME  

• Often associated 
with prominences, 
solar flares or 
“helmet strea-
mers”, but the 
exact mechanisms 
are not known 
 

• May contain up 
to1013 kg matter 
 

• May have velocities 
of up to 1000 km/s 
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CME - magnetic connection to sun 
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Coronal mass ejections 

CME are sometimes called 
“magnetic clouds”, because 
of their magnetic field 
configuration. 

B 
x 



Coronal mass ejections 

Estimate the kinetic energy of this CME! 
(Order of magnitude!) 

Suppose the density ρ of the plasma in the 
cloud is 1000 times denser than the plasma in 
the lower corona, which is ρ  ≈ 10-18 kg/m3  

Suppose the CME velocity is v = 1000 km/s 

Red W = 1012 J 

Blue W = 1017 J 

Yellow W = 1022 J 

1 RE = 6378 km 

Green W = 1027 J 

B 
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r ≈ 20 RE 

VCME ≈ 4πr3/3 ≈ 4π∙203∙(6378 ∙103)/3 ≈ 9∙1024 m3 

mCME = VCME ·ρCME = 9∙1024∙10-15 ≈ 1010 kg 

Maybe the cloud is not fully filled with matter, but I will assume 
that that is a relatively small correction. 

WCME = mCMEvCME
2 = 1010∙(1000∙103)2 ≈ 1022 J 

Yellow WCME = 1022 J 

C.f. nuclear reactor: P ≈ 1 GW.  
In one year: W ≈ 1016 J 
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Solar flare 
1972, August 07, Big Bear Solar Observatory 

• Solar flares are 
explosive  
intensifications 
in X-ray, UV and 
visible light. 
 

• Intensification in 
X-ray may be up 
to a factor 104  
 

• Last for ~ 1 – 60 
min. 
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Solar flares 

Size of solar flares is 
comparable to sunpots. 

flares 
 

EF2240 Space Physics 2015 



Solar flare 
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Solar flare mechanism 

Electrons are accelerated, collide 
with solar surface (photosphere) 
and emit bremsstrahlung (X-rays). 
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Solar flare observations 

(b) coronal loop filled with hot gas 

(a) double signature of x-ray 
emissions at foot of flare 
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Frozen in magnetic field lines 

This applies if the  magnetic Reynolds 
number is large: 

0 1m c cR l vµ σ= >>

An example of the 
collective behaviour 
of plasmas. 

In fluid description of 
plasma two plasma 
elements that are 
connected by a 
common magnetic 
field line at time t1 will 
be so at any other 
time t2 . 
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Frozen in magnetic flux PROOF II 

( ) 2

0

1
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Order of magnitude estimate: 
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∇
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Magnetic Reynolds number Rm: 

Rm >> 1 ⇒ ( )
t

∂
= ∇× ×

∂
B v B

2
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1
t µ σ

∂
= ∇

∂
B BRm << 1 ⇒ 

Frozen-in fields! 

Diffusion equation! 
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X Magnetic reconnection 
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Reconnection 

• Field lines are “cut” and can be re-
connected to other field lines 

• Magnetic energy is transformed 
into kinetic energy (Uo >> Ui) 

• Plasma from different field 
lines can mix 

In ‘diffusion region’: 

Rm = µ0σlv ~1 
 

Thus: condition for 
frozen-in magnetic field 
breaks down. 

A second condition is 
that there are two 
regions of magnetic 
field pointing in 
opposite direction: 
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Reconnection in 1D 

Bx 

x 

z 

2

2
0

1x xB B
t zµ σ

∂ ∂
=

∂ ∂

Diffusion equation! Has solution 

( )
1

2
0

0,
4xB z t B erf z
t

µ σ   =     

2

0

1
t µ σ

∂
= ∇

∂
B B

2

02B
BW dxdydz
µ

∞

−∞

= ∫

The total magnetic energy then decreases with time: 

The magnetic energy is converted into heat and 
kinetic energy in 2D 
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Solar flare 
energization mechanism  

Two possible reconnection  geometries 
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Classification of flares 

Denomination Area (°)2 

S < 2.0 

1 2.1 – 5.1 

2 5.2 – 12.4 

3 12.5-24.7 

4 > 24.7 

Old system 

Denomination Maximum flux of X-ray 
radiation (W/m2)  
(near Earth 0.1-0.8 nm) 

An n x 10-8 

Bn n x 10-7 

Cn  n x 10-6 

Mn n x 10-5 

Xn n x 10-4 

New system 
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Recent X ray flux measurements 

http://www.swpc.noaa.gov/  Space Weather Prediction Centre 



Magnetic reconnection 
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Magnetic reconnection 
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Think about this:  
What determines the form of the spiral of the water 
from a rotating lawn sprinkler? 
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Coronal mass ejection, 2014-09-10 



SOHO 
(Solar and Heliospheric Observatory ) 

ESA - NASA collaboration 

SOHO orbits the first Lagrange point 



Solar wind 

Solar and Heliospheric Observatory (SOHO)  
LASCO C3 Coronagraph Movie  

Corona 
continuously 
merges into 
solar wind 
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Solar wind 

• Fast solar wind in regions 
closer to poles 
 

• Slow solar wind closer to 
equatorial plane 
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Solar wind 
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More active solar wind 

Solar and Heliospheric Observatory (SOHO)  
LASCO C3 Coronagraph Movie  
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Helmet streamers 

Magnetic field drawn out by solar wind. 
This also brakes the solar wind. 
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Solar wind 
Interplanetary current sheet 

B 

Current sheet 
0µ = ∇×j B
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Interplanetary current sheet 

Later we will see that the N-S component of the interplanetary 
magnetic field (IMF is important for the coupling between solar 
wind and magnetosphere) 
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Solar wind 
Some basic facts 

Average 
values 
 
np = 8 cm-3 

v = 320 km/s 

Tp = 4·104 K 

Te = 105 K 

B = 5 nT 

ΦK = ρv3/2 = 
0.22 mW/m2 
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The solar wind today 
Average 
values 
np = 8 cm-3 

v = 320 km/s 

Tp = 4·104 K 

Te = 105 K 

B = 5 nT 

pD = ρv2/2 =  
0.7 nPa 

ΦK = ρv3/2 =  
0.22 mW/m2 
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Measurements from ACE spacecraft 
http://www.swpc.noaa.gov/communities/space-weather-enthusiasts 
Space Weather Prediction Centre 



Guess how long does it take the solar 
wind to flow from the Sun to the Earth? 

Green 

Yellow 

Red 

Blue 8 min 

5 hours 

1.5 days 

5 days 
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3

1.496 10 467500 129.9 5.4
320 10

st s h days
v

⋅
= = = = =

⋅

Red 

But maybe  

Yellow 

if the solar wind is much faster 
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Does anyone happen to know the 
mathematical formula for the spiral caused 

by a rotating garden sprinkler? 
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Solar wind 
Magnetic field frozen into solar wind 

Plasma element 

Magnetic field line 

This is now seen from ”above”! (Looking down on the ecliptic 
plane from the pole.) 
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Solar wind 
Parker spiral 
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Parker spiral 

Derivation of Ψ (Parker angle) 

tan
r r SW

B U r
B U u

φ φ ωψ
 

= = =  
 

Consider a coordinate system rotating 
with the sun. The plasma element P in 
this coordinate system has two velocity 
components: Ur and Uφ .  

Since the magnetic field is frozen into the 
solar wind, and follows the orbit of the 
plasma element P, at any time B has to 
be parallel to U. Then we have: 

P 

Ur 

Uφ 

U 
ψ 

d dt= SWx U
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Solar wind 
Parker spiral 

tan
r SW

B r
B u

φ ωψ
 

= =  
 

Bφ 

Br 

Archimedean spiral: 
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Archimedean spiral 
An Archimedean spiral (also arithmetic spiral), 
is a spiral named after the 3rd-century-BC 
Greek mathematician Archimedes; it is the 
locus of points corresponding to the locations 
over time of a point moving away from a fixed 
point with a constant speed along a line which 
rotates with constant angular velocity. 
Equivalently, in polar coordinates (r,φ) it can 
be described by the equation (Wikipedia) 
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s

W

un
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r a b t
dr b u
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=



What is the angle Ψ 
at Earth’s orbit for a 
typical solar wind 

speed? 

Blue ≈ 1 ° 

Green ≈ 10 ° 

Yellow ≈ 50 ° 

Red ≈ 80 ° 

Bφ 

Br 

Use rotation period 
T of sun: T = 27 days 

r = 1 A.U. 
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arctan( )r
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What is ω?  
6 12 22 2.7 10

27 24 60 60
f s
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π πω π − −= = = = ⋅
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6 11

3
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Yellow 
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Last Minute! 
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Last Minute! 
 

 
• What was the most important thing of today’s lecture? Why? 

 
• What was the most unclear or difficult thing of today’s lecture, 

and why? 
 

• Other comments 
 

EF2240 Space Physics 2015 
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