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L Part I: we will visit
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e Function approximation

Lecture 4: Regression Introduction

e Linear Regression / Least Squares
— RANSAC (handling outliers)

DD2431

Atsuto Maki e KNN Regression
Autumn, 2015 Regression => Real-valued output
Function approximation Linear Regression (parametric)

e How do we fit this dataset D?

Linear regression tries to estimate the function fand
predict the output by

D= {(xl’yl),(xz’yz)""’(XN’yN)}

d
f(x)= Ewixl. =w'x
i=0

of N pairs of inputs xi and targets yi ER .
D can be measurements in an experiment.

Income
20 30 40 50 60 70 80

How to measure the error:
e * Tosee how well f(x) approximates f(x),

10 12 14 16 18 20 22

e Task of regression: Yers of Eucation square error is used: (f(x) —f(x))2

to predict target associated to any arbitrary new input
* Mean Square Error: Em(f)— E(f(x )— yn)2

Note: Here we have a single input feature, but inputs to regression (in-sample)
tasks are often vectors x of multiple input features.




Sales

Minimizing in-sample MSE

Ein can be expressed as:

1< 1
E (w)= NE(WT)C" -y) = N”XW - Y”2
n=1

where

We want to compute the parameters w that minimize Ein.

Examples of least squares fit
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Figures from An Introduction to Statistical Learning (G. James et al.)

Residual sum of squares (RSS)

The sum of squared errors is a convex function of w
2
E,(w)=|Xw-Y|
The gradient with respect to the weights is:

ain"” (w)=2X" (Xw-Y)

The weight vector that sets the gradient to zero
minimizes the errors . r
X Xw=XY

W= (XTX)_I X'y

Examples of plots of RSS

Figures from An Introduction to Statistical Learning (G. James et al.)



Least squares line RANSAC: RANdom SAmpling Consensus

Objective
Robust fit of model to data set S which contains outliers
w Algorithm
> (i) Randomly select a sample of s data points from S and
instantiate the model from this subset.
. (i) Determine the set of data points S; which are within a distance
threshold t of the model. The set S;is the consensus set of
‘ ‘ ' ' ' samples and defines the inliers of S.
(iii) If the subset of S; is greater than some threshold T, re-estimate
the model using all the points in S; and terminate
(iv) If the size of S;is less than T, select a new subset and repeat
the above.
(v) After N trials the largest consensus set S, is selected, and the
model is re-estimated using all the points in the subset S;

* Red: the true relationship f(x) = 2 + 3x, the population regression line

* Blue: the least squares line, estimate based on the observed data

* Light blue (in right): least squares lines, each based on a separate
random set of observations
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Figures from An Introduction to Statistical Learning (G. James et al.) (in Hartley and Zisserman, adapted from Fischler ‘81)

Example plots of f(x)with &-NN regression (1d)

k-NN Regression (non-parametric)

e Similar to the A-NN classifier

* Toregress Y for a given value of X, consider k&
closest points to X in training data and take

the average of the responses. > o > o
1 - .
f@==>, :
kxiENf T T T T T 1. T T T T
. -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
* Larger values of k provide a smoother and less x x
variable fit (lower variance!) k=1 k=9

Figures from An Introduction to Statistical Learning (G. James et al.)



k=1 (blue)
k=9 (red)

k-NN vs. Linear Regression
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Part Il: we will visit

e Linear regression + regularization
— Ridge regression

— The Lasso (a more recent alternative)

Example plots of f(x)with k-NN regression (2d)

In higher dimensions k&-NN often preforms worse than linear regression.

Figures from An Introduction to Statistical Learning (G. James et al.)

Ridge regression

Similar to least squares but minimizes different quantity:

d
RSS+ Ay w;
i=1

The second term is called shrinkage penalty
* Shrinkage penalty: small when wi are close to zero

* The parameter A : controls the relative impact of the two terms,
the selection is critical!



Sample problem: The Credit dataset

20 40 60 80 100

5 10 15 2

2000 8000 14000

Balance

0500 1500

2468

50 100 150

2000 8000 14000

200 600 1000

: j’/,f Rating

050 1500

50 100 150 200 600 1000

FIGURE 3.6. The Credit data set contains information about balance, age,
cards, education, income, limit, and rating for a number of potential cus-

tomers.

Approaches to parameter estimations

Gradient decent

Figures from An Introduction to Statistical Learning (G. James et al.)

Coordinate decent
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Ridge regression coefficients
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As 2 increases, the standardized coefficients shrinks
towards zero (but not exactly forced to zero).
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Ridge Regression Bias/Variance

* Purple: MSE

¢ Black: Bias

* Green: Variance
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Increase \ decreases variance while increasing bias
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The Lasso
(Least Absolute Shrinkage and Selection Operator)

Similar to ridge regression but with slightly different term:

d
RSS+ 2. |w,|
i-1
The shrinkage penalty is now replaced by /i norm

* Ridge regression: it includes all features in the final model,
making it harder to interpret — its drawback

* The lasso could be proven mathematically that some coefficients
end up being set to exactly zero
— variable selection

— vyielding sparse model

Another formulations

For every value of A there is some s such that the
equations will give the same coefficient estimates:

d
* Ridge regression: Mimimizing RSS + )LE Wi2

i=1

d
Mimimizing RSS,sub.towass

i=1

* Lasso:

Mimimizing RSS + Ai‘wi‘
i=1

RSS,sub.toi‘wi‘ <s

i=1

Standardized Coefficients

100 200 300 400

-100 0

-300

Comparison of estimated coefficients

-~ o~ = == -
4 ~ — Income e Sl
~ b
- - - - Limit s | .
— S e Rating 5 N
. N
N Student o \
o
J . ST P N
N\
_ \ 8 N
« = R
‘N
_ T T—— o o
o
o
b g
T T T T T T T T T T T T
1e-02 16400 16402 1e+04 20 50 100 200 500 2000 5000
A A

Ridge regression The Lasso
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The variable selection property

The coefficient estimates: the first point where an
ellipse contacts the constraint region as it expands.
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The solid blue areas are the constraint regions for
Left: the Lasso Right: Ridge regression
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