

Lecture 4: Regression Introduction DD2431

Atsuto Maki

Autumn, 2015

Function approximation

• How do we fit this dataset *D*?

$$D = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$$

of N pairs of inputs x_i and targets $y_i \in R$. D can be measurements in an experiment.

• Task of regression:

to predict target associated to any arbitrary new input

Note: Here we have a single *input feature*, but inputs to regression tasks are often vectors \mathbf{x} of *multiple input features*.

Part I: we will visit

- Function approximation
- Linear Regression / Least Squares
 RANSAC (handling outliers)
- KNN Regression

Regression => Real-valued output

Linear Regression (parametric)

Linear regression tries to estimate the function f and predict the output by

$$\hat{f}(x) = \sum_{i=0}^{d} w_i x_i = w^T x$$

How to measure the error:

- To see how well $\hat{f}(x)$ approximates f(x), square error is used: $(\hat{f}(x) f(x))^2$
- Mean Square Error: $E_{in}(\hat{f}) = \frac{1}{N} \sum_{n=1}^{N} (\hat{f}(x_n) y_n)^2$ (in-sample)

Minimizing in-sample MSE

 E_{in} can be expressed as:

$$E_{in}(w) = \frac{1}{N} \sum_{n=1}^{N} (w^{T} x_{n} - y_{n})^{2} = \frac{1}{N} ||Xw - Y||^{2}$$

where

$$X = \begin{bmatrix} x_1^T \\ \vdots \\ x_N^T \end{bmatrix}, \qquad Y = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix}$$

We want to compute the parameters w that minimize E_{in} .

Residual sum of squares (RSS)

The sum of squared errors is a convex function of w

$$E_{in}(w) = \|Xw - Y\|^2$$

The gradient with respect to the weights is:

$$\frac{\partial}{\partial w} E_{in}(w) = 2X^T (Xw - Y)$$

The weight vector that sets the gradient to zero minimizes the errors $X^T X w = X^T Y$

$$w = \left(X^T X\right)^{-1} X^T Y$$

Examples of least squares fit

Examples of plots of RSS

Least squares line

- Red: the true relationship f(x) = 2 + 3x, the population regression line
- · Blue: the least squares line, estimate based on the observed data
- Light blue (in right): least squares lines, each based on a separate random set of observations

Figures from An Introduction to Statistical Learning (G. James et al.)

k-NN Regression (non-parametric)

- Similar to the k-NN classifier
- To regress Y for a given value of X, consider k
 closest points to X in training data and take
 the average of the responses.

$$f(x) = \frac{1}{k} \sum_{x_i \in N_i} y_i$$

• Larger values of k provide a smoother and less variable fit (lower variance!)

RANSAC: RANdom SAmpling Consensus

Objective

Robust fit of model to data set S which contains outliers Algorithm

- (i) Randomly select a sample of s data points from S and instantiate the model from this subset.
- (ii) Determine the set of data points S_i which are within a distance threshold t of the model. The set S_i is the consensus set of samples and defines the inliers of S.
- (iii) If the subset of S_i is greater than some threshold T, re-estimate the model using all the points in S_i and terminate
- (iv) If the size of S_i is less than T, select a new subset and repeat the above.
- After N trials the largest consensus set S_i is selected, and the model is re-estimated using all the points in the subset S_i

(in Hartley and Zisserman, adapted from Fischler '81)

Example plots of $\hat{f}(x)$ with k-NN regression (1d)

k-NN vs. Linear Regression

Figures from An Introduction to Statistical Learning (G. James et al.)

Part II: we will visit

- Linear regression + regularization
 - Ridge regression
 - The Lasso (a more recent alternative)

Example plots of $\hat{f}(x)$ with k-NN regression (2d)

In higher dimensions k-NN often preforms worse than linear regression.

Figures from An Introduction to Statistical Learning (G. James et al.)

Ridge regression

Similar to least squares but minimizes different quantity:

$$RSS + \lambda \sum_{i=1}^{d} w_i^2$$

The second term is called shrinkage penalty

- Shrinkage penalty: small when w_i are close to zero
- The parameter λ: controls the relative impact of the two terms, the selection is critical!

Sample problem: The Credit dataset

Figures from An Introduction to Statistical Learning (G. James et al.)

Approaches to parameter estimations

· Gradient decent

Coordinate decent

Ridge regression coefficients

As λ increases, the standardized coefficients shrinks towards zero (but not exactly forced to zero).

Figures from An Introduction to Statistical Learning (G. James et al.)

Ridge Regression Bias/Variance

• Purple: MSE

Black: Bias

• Green: Variance

Increase λ decreases variance while increasing bias

The Lasso

(Least Absolute Shrinkage and Selection Operator)

Similar to ridge regression but with slightly different term:

$$RSS + \lambda \sum_{i=1}^{d} |w_i|$$

The shrinkage penalty is now replaced by l_1 norm

- Ridge regression: it includes all features in the final model, making it harder to interpret – its drawback
- The lasso could be proven mathematically that some coefficients end up being set to exactly zero
 - variable selection
 - yielding sparse model

Another formulations

For every value of λ there is some s such that the equations will give the same coefficient estimates:

• Ridge regression: Mimimizing
$$RSS + \lambda \sum_{i=1}^{d} w_i^2$$

Mimimizing
$$RSS$$
, $sub.to \sum_{i=1}^{d} w_i^2 \le S$

• Lasso: Mimimizing
$$RSS + \lambda \sum_{i=1}^{d} \left| w_i \right|$$

$$RSS, sub.to \sum_{i=1}^{d} \left| w_i \right| \le s$$

Comparison of estimated coefficients

Figures from An Introduction to Statistical Learning (G. James et al.)

The variable selection property

The coefficient estimates: the first point where an ellipse contacts the constraint region as it expands.

The solid blue areas are the constraint regions for Left: the Lasso Right: Ridge regression

Figures from An Introduction to Statistical Learning (G. James et al.)