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1 Briefly about the course.

This course consists of three parts and these notes are only the theoretical
aspects of the first part. But since these notes introduce the first part it might
be in order to briefly describe the course. The three parts of the course forms a
progression.

In part 1 we study mostly partial differential equations where we have some
hope to write down explicit solutions. We will in particular study first order
quasilinear equations (quasilinear means that the equation is linear in it’s highest
order derivative). For these equations one may write down explicit solutions,
by using undergraduate calculus, in some easy cases. However, it will soon be
clear that one needs abstract theory in order to analyze the equations. Tis is
the first baptism of abstract theory in the course.

In part 2 of the course you will study second order linear equations. There
are three types of second order equations that serves as models for most par-
tial differential equations. These are the elliptic equations (represented by the
laplace equation), the parabolic equations (represented by the heat equation)
and hyperbolic equations (represented by the wave equation). This is the heart
of the course and many of the standard theorems for these three equations will
be covered in this part of the course. The theory developed will to a large extent
be based on representation formulas. This is somewhat disingenuous sinc ewe
can only write down these formulas in very simple settings (say for a very nice
PDE such as the laplace equation in a very nice domain such as the ball). But
the material is standard for any PDE course at masters level and it is a very
nice introduction to semi-abstract theory.

In the final part, part 3, of the course we will study the obstacle problem.
This is meant as an introduction to modern mathematics. The obstacle problem
is, in the setting we will study it, a non-linear problem based on the laplacian.
For this problem we have no representation formulas and we will therefore be
forced to develop an abstract theory. The progression of the course is therefore
from partial differential equations of first order that can be approached by first
year calculus to the obstacle problem where we are close to modern research
and we will have to work with abstract theories. In between you will get the
foundation of classical PDE theory.
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In this first part of the course we will mimic the greater story of the course.
We will start by calculating solutions and then, when calculations fails, move
toward an abstract theory. The questions that are most important to us when
studying PDE are: “Does solutions exist?”, “If they do, can we calculate or
construct them?”, “What properties does solutions have? Are they bounded?,
Will they be defined everywhere?” et.c. and “If we cannot calculate the so-
lutions can we at least estimate them (meaning controlling some norm of the
solutions)?”. In the next few weeks we will encounter all these questions and
different answers. In that sense the first part of the course will be a microcosmos
of the entire course and PDE theory in general.

2 Introduction to the method of Characteris-
tics.

Consider the following equation:

a(x, y, u(x, y))∂u(x,y)
∂x + b(x, y, u(x, y))∂u(x,y)

∂y = c(x, y, u(x, y)) for (x, y) ∈ Ω

u(x, y) = h(x, y) on the curve Γ ⊂ Ω.
(1)

We assume that Ω ⊂ R2 is a given open set, and that a(x, y, z), b(x, y, z), c(x, y, z) ∈
C(Ω × R) are given continuous functions and h(x) ∈ C1(Γ ∩ Ω). The curve Γ
will be any differentiable one dimensional curve in R2, say

Γ = {(f(s), g(s)); s ∈ [0, 1]}

for some functions f, g ∈ C1([0, 1]) such that |f ′(s)|+ |g′(s)| 6= 0.
We are interested in whether there exists a function u(x, y) ∈ C1(Ω) satis-

fying (1). If such a function exists, is it unique? Can we calculate them?
Without any information about a, b, c and f it is impossible to say much

about the equations. But, in order to increase our intuition about the equations,
we will try to understand them informally. The equations are of the form

a
∂u(x, y)

∂x
+ b

∂u(x, y)

∂y
= (a, b) · ∇u = c. (2)

In particular, (2) shows that the partial differential equation determines the
value of the derivative of u in the direction (a, b). If (a, b) are known functions,
say that a and b only depend on x and y: a = a(x, y) and b = b(x, y) then we
should be able to choose a coordinates (s, t) such that curves s =constant are
tangential to (a(x, y), b(x, y)) at every point.
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Figure 1: The vector field (a, b) (left) and new curvilinear coordinates such
that the lines t =const. are tangential to (a, b).

For each (s, t), the crossing of two lines in the left graph of figure 1, there
exists a point (x, y). We may write that point (x(t; s), y(t; s)).1 The tangent of
the curve (x(t; s), y(t; s)) for a fixed s is given by(

dx(t; s)

dt
,
dy(t; s)

dt

)
. (3)

But if the curve (x(t; s), y(t; s)), s being fixed, is tangential to (a(x, y), b(x, y))
only if the tangent (3) is proportional to

(
a(x(t; s), y(t; s)), b(x(t; s), y(t; s))

)
. In

particular if(
dx(t; s)

dt
,
dy(t; s)

dt

)
= (a(x(t; s), y(t; s))), b(x(t; s), y(t; s)))

or equivalently:

dx(t; s)

dt
= a(x(t; s), y(t; s))) and

dy(t; s)

dt
= b(x(t; s), y(t; s)) (4)

then (a(x, y), b(x, y)) is a tangent vector field to the curves (x(t; s), y(t; s)).
Assuming that we can solve the ordinary differential equations (4) then,

according to the chain rule, we may write, for s fixed,

du(x(t; s), y(t; s))

dt
=
dx(t; s)

dt

∂u(x, y)

∂x
+
dy(t; s)

dt

∂u(x, y)

∂x
=

=

{
using
(4)

}
= a(x, y)

∂u(x, y)

∂x
+ b(x, y)

∂u(x, y)

∂y
.

Thus, if we can solve (4), then the system (1) can be reduced to

du(x(t; s))

dt
= c(x(t; s), y(t; s), u(x(t; s), y(t; s))).

1The notation might seem to be backwards. But later we will think of (x(t; s), y(t; s)) as
functions of t with s being a parameter.
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We have effectively reduced the partial differential equation (1) to a system of
ordinary differential equations:

dx(t; s)

dt
= a(x(t; s), y(t; s))),

dy(t; s)

dt
= b(x(t; s), y(t; s))

and
du(x(t; s))

dt
= c(x(t; s), y(t; s), u(x(t; s), y(t; s))).

This is a beautiful idea since it reduces a difficult problem, that is a partial
differential equation, to a simpler problem, a system of ordinary differential
equations, that we can solve. In the first part of this course we will pursue this
idea in order to solve first order partial differential equations.

In the next section we will discuss the idea in further detail as well as point-
ing out some limits and difficulties with the method. We will then develop
some theory for the solution of these equations and try to analyze some of the
difficulties that we point out in the next section.

3 The Method of Characteristics.

We are interested in solutions to (1) which we restate here for convenience:

a(x, y, u(x, y))∂u(x,y)
∂x + b(x, y, u(x, y))∂u(x,y)

∂y = c(x, y, u(x, y)) for (x, y) ∈ Ω

u(x, y) = h(x, y) on the curve Γ ⊂ Ω,
(5)

where h is a given function on the curve Γ = {(f(s), g(s)); s ∈ [0, 1]}.
In this section we will assume that we have a solution u(x, y) to the partial

differential equation (5). By the analysis in the previous section we know that
changing the parametrization of the plane and writing x = x(t; s) and y = y(t; s)
we might reduce the PDE (5) into a system of ordinary differential equations. In
particular, if we assume that we can solve the ordinary differential equations,
for each fixed s,

dx(t; s)

dt
= a(x(t; s), y(t; s)), u(x(t; s), y(t; s))), (6)

dy(t; s)

dt
= b(x(t; s), y(t; s)), u(x(t; s), y(t; s))) (7)

then u(x(t; s), y(t; s)) will solve (just as in the previous section)

du(x(t; s), y(t; s))

dt
=
dx(t; s)

dt

∂u(x(t; s), y(t; s))

∂x
+
dy(t; s)

dt

∂u(x(t; s), y(t; s))

∂y
=

(8)
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= a(x, y, u(x, y))
∂u(x(t; s), y(t; s))

∂x
+ b(x, y, u(x, y))

∂u(x, y)

∂y
= c(x, y, u(x, y)),

(9)
where we used the assumptions (6) and (7) in the second equality and the
assumption that u solves the PDE (5) in the final equality. Notice that (8)-(9)
together becomes

du(x(t; s), y(t; s))

dt
= c(x, y, u(x, y)), (10)

which again is an ordinary differential equation.
This shows that if we have a solution u(x, y) and if we can solve (6)-(7) then,

x(t; s), y(t; s) and u(t; s) = u(x(t; s), y(t; s)) will solve the ordinary differential
equations (6), (7) and (10).

The PDE (5) also contains some boundary data

u(x, y) = h(x, y) on the curve Γ ⊂ Ω (11)

where h is a given function on the curve Γ = {(f(s), g(s)); s ∈ [0, 1]}. Notice
that if we impose that

x(0; s) = f(s)
y(0; s) = g(s) and
u(x(0; s), y(0; s)) = h(s)

(12)

then it follows that (11) is satisfied.
To summarize, if we can solve (6)-(7) with the first two boundary conditions

in (12) and if u(x, y) is a solution to (5) then u(x(t; s), y(t; s)) solves the ODE
(10) and u(x(t; s), y(t; s)) satisfies the third boundary condition in (12).

This is somewhat backwards (and not at all how mathematics is supposed
to be taught!). But it leads us to the following conjecture.

Conjecture 1. Assume that x(t; s), y(t; s) and z(t; s) solves the following sys-
tem of ordinary differential equations

dx(t;s)
dt = a(x, y, z) x(0; s) = f(s)

dy(t;s)
dt = b(x, y, z) y(0; s) = g(s)

dz(t;s)
dt = c(x, y, z) z(0; s) = h(s),

(13)

for each s ∈ [0, 1].

Remark: This conjecture illustrates is a typical trick in mathematics. We
want to solve a certain problem that is very difficult. Instead we transform
the problem to something different that we can solve and work with that prob-
lem instead. Since we can solve (13), as we will see later, we get a problem
where we can apply the strong calculational tools of mathematics to gain more
understanding of the problem than we could by just using our intuition.

Notice that we made some daring assumptions, in particular that we already
had a solution to the PDE, in order to arrive at the conjecture. The conjecture
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itself is however independent of these assumption and will prove itself if it leads
to interesting results.

Then the function u(x(t; s), y(t; s)) = z(t; s) will solve the partial differential
equation (5).

We will call the equations (13) for the characteristic equations. The method
of solving the PDE (5) by solving the characteristic equations is called the
method of characteristics. Moreover, the curves in R3

{(x(t; s), y(t; s), z(t; s)); t ∈ R, s fixed}

are called the characteristic curves. And the projections of the characteristic
curves into R2

{(x(t; s), y(t; s)); t ∈ R, s fixed} ⊂ R2

are called the characteristic projections.
This conjecture gives us a strategy for solving the PDE (5). In particular,

as we have remarked before, it is in general much easier to solve an ordinary
differential equation than it is to solve a partial differential equation. So if the
conjecture turns out to be true2 then we have reduced a more difficult problem
to a simpler problem. Before we start to state theorems and try to prove the
conjecture we will make some remarks about it:.

Existence of Solutions to ODEs. The first step in the analysis of a partial
differential equation is usually to show that a solution exists. The reduction of
the PDE (5) to the ODE (13) would be of little help to do this unless we can
actually show that solutions to the ODE exists. So the first order of business
will be to show that we can actually find solutions to the ODE (13).

We will prove that solutions the ODE (13) exists, under certain (mild) as-
sumptions on the functions a, b and c, in Theorem 1 in the next section. In
the process of proving the existence we will see some interesting geometrical
situations where we have no solutions.

However we will, in general, not be able to write down explicit solutions to
the equations. This is not strange or unusual in higher mathematics and we will
have to get used to not being able to calculate solutions (except in the most
trivial circumstances) when we work with PDE.

Invertability of the map (t; s) 7→ (x, y). The second problem we will
encounter is that the solution to the ODE is given in the parameters (t; s). In
particular, if we solve the ODE (13) and if the conjecture is true, then we will
be given the solution u(x(t; s), y(t; s)) = z(t; s) which is a function in (t; s).
Therefore we would like to invert the relationship (t; s) 7→ (x, y) and define
(t; s) as functions of (x, y). If that is possible then we may write u(x, y) =
z(t(x, y); s(x, y)) which is a function of (x, y).

It is however, in general, not possible to find an explicit formula for the
inversion of the function (t; s) 7→ (x, y). At times we will be able to express

2As we will see later, the conjecture will be true with certain modifications.
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u(x, y) in some implicit form u = f(x, y, u) (see example 1.6 in “Applied Partial
Differential Equations”). This provides much information regarding u. But
naturally it is far from optimal.

We will use the implicit function theorem to show that, in theory, we can
invert the relation locally around certain points.

Domain of definition. The next problem is that, in the best case scenario,
the solution u(x, y) will only be defined on the set

{(x(t; s), y(t; s)); s ∈ [0, 1] and t ∈ R} .

This set is determined by the solutions x(t; s) and y(t; s). In particular, the
domain of definition of u(x, y) is determined by the initial conditions. This
means that the initial data doesn’t provide enough information for the solution
to be defined in the entire set Ω.

This is not a problem with the method. It is rather a problem with our
formulation of the problem. We simply can not decide in which set Ω the
solution will be defined - the mathematics itself chooses where the solution is
defined. The situation is a little bit similar to analytic continuation in complex
analysis. In complex analysis an analytic function defined in some disc D may be
extend to a certain set (maybe on a Riemann surface) but the set is determined
by the values of the function on D.

For examples of this problem3 see example 1.6 in “Applied Partial Differen-
tial Equations” or below on the discussion on shocks and rarefacation.

Shocks and Rarefacation. This problem is a little similar to the problem
of the domain of definition and it stems from the fact that the characteristic
projections {(x(t; s), y(t; s)); t ∈ R} are determined by the equations and may
cross, which causes shocks, or diverge, which causes rarefacation. It will be
easier to see this by means of examples.

Example 1 [Rarefarcations]: Consider the PDE, defined for y > 0,

u(x, y)ux(x, y) + uy(x, y) = 0 in R2

u(x, 0) =

{
1 if x < 0
2 if x ≥ 0

(14)

The characteristic equations are, with the prime indicating the derivative with
respect to t: u′ = ∂x

∂t ,

x′(t; s) = z(t; s) x(0; s) = s
y′(t; s) = 1 y(0; s) = 0

z′(t; s) = 0 z(0; s) =

{
1 if s < 0
2 if s ≥ 0

3Or maybe it isn’t a problem but one of these beautiful instances where mathematics gently
guides us towards a the right conclusion whether that happens to be the conclusion we wanted
or expected?
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The third equation implies that z(t; s) is independent of t and thus

z(t; s) =

{
1 if s < 0
2 if s ≥ 0

The ordinary differential equation for y implies that y(t; s) = t The equation
for x becomes, after substituting our expression of z,

x′(t; s) =

{
1 if s < 0
2 if s ≥ 0

and x(0; s) = s.

This clearly implies that

x(t; s) =

{
s+ t if s < 0
s+ 2t if s ≥ 0.

The projected characteristics are therefore given by the curves (lines actu-
ally)

PCs =

{
(x, y); x =

{
s+ t if s < 0
s+ 2t if s ≥ 0.

, y = t, t > 0

}
.

If we plot some of these lines we see that they are given by lines. The lines that
have slope 1/2 if they intersect positive x−axis and slope 1 if they intersect the
negative x−axis.

x

y

The geometry of the projected characteristics is depicted above. The gray
area indicates a region where no projected characteristics enter. This means
that the initial data does not specify the solution u in this region. This is
logically the same as the domain of definition of the solution is R2 ∩ {y > 0}
minus the gray region and this can thus be viewed as a problem with the domain
of definition.

However, if we extend the solution to negative y then the projected charac-
teristics will start to cross. In the picture below we can see the geometry of the
situation.
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x

y

Shock

We will call the bold line in the picture a shock, that is a line where the
solution becomes discontinuous. In this case it is easy to see that the solution
u = 2 to the right of the shock and u = 1 to the left of the shock.

The appearance of shocks is not really a problem with the method of char-
acteristics. As a matter of fact we can not define a solution to (14) that is
continuous in R2 ∩ {y < 0}.

One might suspect that the appearance of shocks and rarefacation is due to
the discontinuity of the boundary data. Later we will see that this is locally
true under some additional assumptions. By “locally true” we mean that we
can exclude shocks/rarefacation close to the curve where the boundary data is
given.

An extreme case of the problem with the domain of definition. In
the extreme case the initial line (f(s), g(s)) is a characteristic line. In this case
we prescribe u(f(s), g(s)) = h(s) but simultaneously u should solve an ordinary
differential equation. This is of course only possible for very special functions
h(s). This means that there might not be any solutions.

Blow-ups. The final problem is also not related to the method of charac-
teristics but to the partial differential equation itself. In particular, the solution
might blow-up. That means that the solution may develop singularities beyond
which we cannot define it. This is easiest seen by means of an easy example.

Example 2 [Blow-ups]: Consider the simple PDE

uy(x, y) = u(x, y)2 in R2

u(x, 0) = 1.
(15)

This equation is independent of x so we may treat it as a ordinary differential
equation directly: u′ = −u2 where u′ = ∂u

∂y . This ODE is separable and the gen-

eral solution is u(x, y) = − 1
y+c . Choosing c = −1, that is u(x, y) = 1

1−y , assures

that u(x, y) satisfies the boundary data. This implies that limy→1− u(x, y) =∞.
The solution blows up at the line y = 1 and we may not extend the solution in
a continuous way beyond that line.

For another example of blow-up behavior see example 1.7 in “Applied Partial
Differential Equations”.



4 SOME THEORY FOR ODES. 10

4 Some Theory for ODEs.

We have conjectured that solving a first order PDE,

a(x, y, u)∂u∂x + b(x, y, u)∂u∂y = c(x, y, u)

u(f(s), g(s)) = h(s) for s ∈ (−α, α),
(16)

can be reduced to solving the Characteristic equations:

dx(t;s)
dt = a(x, y, z) x(0; s) = f(s)

dy(t;s)
dt = b(x, y, z) y(0; s) = g(s)

dz(t;s)
dt = c(x, y, z) z(0; s) = h(s).

(17)

We will see that this conjecture is essentially true but in order to benefit from
the reduction of (16) to the system (17) we need to show that we can find
solutions to (17).

In the following Theorem we show that there exist a solution to (17) under
some mild conditions on a, b and c.

Theorem 1. Let K > 0 and F (t, p) : (−α, α)×BK(p0)→ Rn be a continuous
function satisfying the following Lipschitz condition4

|F (t, p1)− F (t, p2)| ≤ L|p1 − p2| (18)

for all t ∈ (−α, α) and p1, p2 ∈ BK(p0).
Then there exist an ε > 0 such that the following ODE:

dp(t)
dt = F (t, p(t))
p(0) = p0

(19)

has a solution p(t) ∈ C1(−ε, ε).

Remark: Notice that p and p0 are vectors in the theorem and that F is
vector valued. If we set, for a fixed s,

p(t) =

 x(t; s)
y(t; s)
z(t; s)

 and F (t, p) =

 a(x(t; s), y(t; s), z(t; s))
b(x(t; s), y(t; s), z(t; s))
c(x(t; s), y(t; s), z(t; s))


then the solution to (19) is a solution to (17).

Before we prove the Theorem we need to prove a simple but powerful result
from functional analysis.

Lemma 1. Let X be a complete metric space. Also let T : X → X be a mapping
satisfying

dist(Tx, Ty) ≤ rdist(x, y) (20)

for some r < 1 and all x, y ∈ X. Then T has a unique fixed point x ∈ X. That
is, there exist a unique x ∈ X such that Tx = x.

4Remember that a function f(x) is called Lipschitz in x with Lipschitz constant L if
|f(x)− f(y)| ≤ L|x− y| for all x and y in f ’s domain of definition.
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Proof: We begin to show uniqueness. Assume that we have two fixed points
x and y. Then form (20) we have

rdist(x, y) ≥ dist(Tx, Ty) = dist(x, y), (21)

where we used that, by assumption, Tx = x and Ty = y in the last equality.
Since r < 1 equation (21) implies that dist(x, y) = 0 which implies that x = y.

To show existence we pick any x0 ∈ X and define

xk = T k(x0),

where T k(x0) = T (T (T (...T (x0)))) is T applied to x0 k times. Then by the
triangle inequality

dist(xk+m, xk) ≤ dist(xk+m, xk+m−1) + dist(xk+m−1, xk+m−2)+ (22)

+...+ dist(xk+1, xk).

Notice that by (20) we have

dist(xl, xl−1) = dist(T (xl−1), T (xl−2)) ≤ rdist(xl−1, xl−2) ≤ ... ≤ rldist(x1, x0)

so equation (22) can be estimated

dist(xk+m, xk) ≤

k+m−1∑
j=k

rj

dist(x1, x0) ≤ rk

1− r
dist(x0, x1).

Since r < 1 it follows that xk is a Cauchy sequence and we may use that X is
complete to conclude that limk→∞ xk = x for some x.

We need to show that Tx = x. Since xk → x there exist an Nε such that
dist(x, xk) < ε for all k > Nε. Form (20) it follows that

dist(T (x), T (xk)) < rε

for k > Nε. In particular, by the triangle inequality, we have

dist(Tx, x) ≤ dist(T (x), T (xk)) + dist(T (xk), x) < rε+ ε < 2ε (23)

for all k > Nε. We also used that T (xk) = xk+1.
Since ε is arbitrary we may, from (23), conclude that Tx = x. The Lemma

follows.

We are now ready to prove Theorem 1.

Proof of Theorem 1: We would like to apply Lemma 1. To that end we
define T on the space X by

T (p)(t) = p0 +

∫ t

0

F (s, p(s))ds
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where

X =

{
u ∈ C

(
(−ε, ε)

)
; u(0) = p0, sup

t∈(−ε,ε)
|u(t)− p0| < K

)}
,

where ε is to be chosen later. We also define the distance on X according to

dist(p(t), q(t)) ≡ ‖p(t)− q(t)‖ ≡ sup
t∈(−ε,ε)

|p(t)− q(t)|.

In order to use Lemma 1 we need to show

1. that T : X → X. In particular we need to show that |T (p)(t) − p0| ≤ K
for all p ∈ X that T (p)(0) = p0 and that T (p)(t) ∈ C(−ε, ε). It is easy to
verify that T (p)(0) = p0 and that T (p)(t) ∈ C(−ε, ε) and it is therefore
left as an exercise.

2. That ‖T (p)(t)− T (q)(t)‖ ≤ r‖p(t)− q(t)‖.

To show 1 we notice that

sup
s ∈ (−ε, ε)
‖p(t)− p0‖ ≤ K

∣∣F (s, p(s))
∣∣ ≤

≤ sup
s ∈ (−ε, ε)
‖p(t)− p0‖ ≤ K

∣∣F (s, p(s))− F (s, p0) + F (s, p0)
∣∣ ≤

≤ sup
s ∈ (−ε, ε)
‖p(t)− p0‖ ≤ K

(∣∣F (s, p0)
∣∣+
∣∣F (s, p(s))− F (s, p0)

∣∣) ≤
≤ sup

s ∈ (−ε, ε)
‖p(t)− p0‖ ≤ K

(∣∣F (s, p0)
∣∣+ L|p(s)− p0|

)
≤

≤ sup
s ∈ (−ε, ε)

(∣∣F (s, p0)
∣∣)+ LK ≤M

Where M is a constant depending only on L, K, F and p0. Most importantly,
M is some finite constant.

In particular if ε < K/M , |t| < ε and p(t) ∈ X then

∣∣T (p(t))− p0

∣∣ ≤ ∣∣∣∣∫ t

0

F (s, p(s))ds

∣∣∣∣ ≤ ∫ t

0

|F (s, p(s))|ds ≤ |t|M < K.

That is T (p)(t) ∈ X if p(t) ∈ X and ε < K/M .
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Next we need to show that 2 holds, that is that T is a contraction. For that
we calculate

|T (p)(t)− T (q)(t)| =
∣∣∣∣∫ t

0

F (s, p(s))ds−
∫ t

0

F (s, q(s))ds

∣∣∣∣
≤
∫ t

0

|F (s, p(s)− F (s, q(s)))| ds

≤
∫ t

0

L|p(s)− q(s)|ds ≤ |t|L sup
s∈(0,t)

|p(s)− q(s)|,

here we also used (18). In particular it follows that

‖T (p)(t)− T (q)(t)‖ ≤ L|t|‖p− q‖.

So if |t| < ε ≤ 1
2L then we have

‖T (p)(t)− T (q)(t)‖ < 1

2
‖p− q‖,

which is the same as 2 with r = 1
2 . So if we choose ε < inf(1/(2L),K/M) may

thus use Lemma 1 and conclude that T has a fixed point p(t) ∈ X. That is,
there exists a p(t) ∈ X such that

p(t) = p0 +

∫ t

0

F (s, p(s))ds. (24)

It is a simple exercise, using the fundamental theorem of calculus, to verify
that the fixed point p(t) ∈ C1(−ε, ε) so we may differentiate (24) and conclude
that

dp(t)

dt
= F (t, p(t)).

Moreover, substituting t = 0 in (24) we see that

p(0) = p0.

It follows that p(t) is a solution to the initial value problem (19).
The above theorem gives a solution to the ordinary differential equation that

is continuously differentiable in t. We are however interested in the first order
PDE so we will also need to show that the solution is continuously differentiable
in s. We do that in the following theorem.

Theorem 2. Let where F satisfy the condition in Theorem 1 and assume that
p(t; s) be a family (parametrized by s ∈ (−α, α)) of solutions, for t ∈ (−ε, ε), to
the following ODE

dp(t;s)
dt = F (t, p(t; s))

p(0; s) = p0(s).
(25)
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1. If p0(s) ∈ C(−α, α) then p(t; s) ∈ C((−ε, ε)× (−α, α)).

2. If |p0(s0)− p0(s1)| ≤ K|s0− s1| then |p(t; s0)− p(t; s1)| ≤ KeLt with L as
in Theorem 1.

3. If F ∈ C1 and p0(s) ∈ C1(−α, α) then p(t; s) ∈ C1((−ε, ε)× (−α, α)).

In order to prove this theorem we need a simple Lemma. The Lemma is
the first instance of an a priori estimate (see the inequality (26)). An a priori
estimate is an inequality where we estimate th solution to a PDE, in this case
we estimate the value of the solution but most often it is the maximal value or
an integral of the derivatives that is estimated, by means of the coefficients of
the equation and the initial data (and for PDE the geometry of the domain).
It is almost impossible to overestimate the importance of a priori estimates in
modern PDE theory. A priori estimates are used to show existence of solutions,
symmetry properties of solutions, construction of counterexamples et.c. et.c.

Lemma 2. Assume that u(t) = [u1(t), u2(t), ..., un(t)]T is a solution to the
following ordinary differential equation

u′(t) = F (t)u(t) + f(t) in t < 0
|u(0)| = τ,

where F (t) is a matrix valued function.
Assume furthermore that |F (t)v| ≤ M |v| for t ∈ R and any vector v ∈ Rn

and |f(t)| ≤ cf . Then

|u(t)| ≤ eMt

[
1

M
− e−Mt

M

]
cf + τeMt. (26)

Proof: Let us first prove the Lemma when f = 0. This is not necessary
since we will prove the general case later, but the proof is somewhat clearer
when f(t) = 0. To that end we consider the function v(t) = e−Mtu(t), then the
Lemma states that v′(t) ≤ 0. To see this we just differentiate |v|2:

∂|v|2

∂t
= 2v(t) · v′(t) = 2e−2Mtu(t) · u′(t)− 2Me−2Mt|u(t)|2 =

=
{
u′ = Fu

}
= 2e−2Mtu(t)〈F (t), u(t)〉 − 2Me−2Mt|u(t)|2 ≤ 0,

since u(t)〈F (t), u(t)〉 ≤ |u||F (t)u(t)| ≤M |u|2.
For the general case we notice that if wε = (w1

ε , w
2
ε , ..., w

n
ε ), where

wiε(t) = eMt

[
1

M
− e−Mt

M

]
cf√
n

+
τ + ε√
n
eMt,

then
dwiε(t)

dt
= Mwiε +

cf√
n

and wiε(0) >
τ√
n
. (27)
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Therefore (27) implies that

d|wε(t)|2

dt
= 2wε(t) · w′ε(t) = 2

(
|wε(t)|2 +

n∑
i=1

cf√
n
wiε(t)︸ ︷︷ ︸

=cf |wε(t)|

)
>

>

{
if
|wε(t)|2 > |u(t)|

}
> 2

(
M |u(t)|2 + cf |u(t)|

)
≥

≥ 2
(
u(t) · 〈F (t) · u(t)〉+ cf |u(t)|︸ ︷︷ ︸

≥f(t)·u(t)

)
≥

≥ 2u(t) · u′(t) =
d|u(t)|2

dt
,

where we used that u′ = F (t) · u(t) + f(t) in the last equality. We have thus
shown that if |wε(t)|2 ≥ |u(t)| then

d|wε(t)|2

dt
≥ d|u(t)|2

dt
.

By assumption on u and construction of wε we know that |wε(0)|2 = τ + ε >
|u(0)|2. We may therefore conclude that |wε(t)|2 ≥ |u(t)|2 for any ε > 0 and
any t > 0. Sending ε→ 0 we conclude that

|u(t)| ≤ eMt

[
1

M
− e−Mt

M

]
cf + τeMt.

Before we prove the Theorem 2 we need to make a clarification about the
notation that we use. By ∇p we will mean the operator

∇p =

(
∂

∂p1
,
∂

∂p2
, ...,

∂

∂pn

)
,

in particular if F (t, p) = [F1, F2, ..., Fn]
T

is the vector valued function in Theo-
rem 2 then

∇pF (t, p(t; s)) =


∂F1(t,p(t;s))

∂p1

∂F1(t,p(t;s))
∂p2

· · · ∂F1(t,p(t;s))
∂pn

∂F2(t,p(t;s))
∂p1

∂F2(t,p(t;s))
∂p2

· · · ∂F2(t,p(t;s))
∂pn

...
. . .

...
∂Fn(t,p(t;s))

∂p1

∂Fn(t,p(t;s))
∂p2

· · · ∂Fn(t,p(t;s))
∂pn


Later on we will also use the notation D(t,s) for the total derivative

D(t,s) =

[
d

dt
,
d

ds

]
.
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We are now ready to prove Theorem 2.

Proof of Theorem 2: For the first part of the theorem it is enough to show
that p(t; s) is continuous in s since, by assumption, p(t; s) is differentiable in t,
and thus continuous in t.

Let s0 ∈ (−α, α) be any point and define

v(t; s) = p(t; s)− p(t; s0).

In order to show that p(t; s) is continuous in s at s0 we need to show that
v(t; s)→ 0 as s→ s0.

Notice that v(t; s) solves the following differential equation, for each fixed s,

v′(t; s) = F (t, p(t; s))− F (t, p(t; s0)) (28)

where we used v′ to denote dv(t;s)
dt .

Next we, and here is the main point in the proof, notice that

p(t; s)− p(t; s0) =

∫ 1

0

[
d

dr
F (t, (1− r)p(t; s) + rp(t; s0))

]
dr =

=

∫ 1

0

∇pF (t; (1− r)p(t; s) + rp(t; s0))dr︸ ︷︷ ︸
=G(t;s)

(p(t; s)− p(t; s0))︸ ︷︷ ︸
=v(t;s)

, (29)

where we changed the derivative to a partial derivative and applied the chain
rule in the last step. We also define G(t; s) according to the formula above.
Comparing this to (28) we see that

v′(t; s) = G(t; s)v(t; s).

Notice that since F is a Lipschitz function it follows that

|∇pF (t, p)| ≤ L⇒ |G(t, p)| ≤ L,

where L is the constant in Theorem 1. In particular, from Lemma 2, we see
that

|v(t; s)| ≤ |v(0; s)|eLt. (30)

The inequality (30) shows that the value of v(t; s) is controlled by

v(0; s) = p(0; s)− p(0; s0). (31)

But by assumption p(0, s) = p0(s) ∈ C(−α, α). This means that, for each t ∈ R,
there exists a δε,t > 0 for each ε > 0 such that

|p(0; s)− p(0; s0)| < εe−Lt for all s such that |s− s0| < δε,t. (32)

This implies that for each t and each ε > 0 there exists a δε,t > 0 such that

|p(t; s)− p(t; s0)| =
{

def. of v
}

= |v(t; s)| ≤
{

eq. (30)
}
≤ |v(0; s)|eLt ≤
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≤
{

eq. (31)
}
≤ |p(0; s)− p(0; s0)|eLt <

{
eq. (32)

}
< εe−LteLt = ε (33)

for all s such that |s− s0| < δε,t. This proves that p(t; s) is continuous in s.

In order to show the second part we just notice that we may choose δ =
|s− s0| and use |p0(s0)− p0(s1)| ≤ K|s0 − s1| instead of (32) in the calculation
(33) gives the estimate

|p(t; s0)− p(t; s1)| ≤ KeLt|s0 − s1|

which is what we desire.

Next we show that if F and p0(s) are C1 then p(t; s) is C1. In order to do
that we will show that there exists a function w(t; s0) such that

|p(t; s)− p(t; s0)− (s− s0)wp′0(s0)(t; s0)| = o(|s− s0|)

for each t. Then it follows that ∂p(t;s)
∂s is continuous and thus uniformly contin-

uous on compact sets. We choose w(t; s0) to be the solution to

w′(t; s0) = ∇pF (t, p(t; s0))w(t; s0) and w(t; s0) = 1, (34)

notice that (34) is a linear ODE and therefore has a solution.

We also need to make a slightly more careful analysis of the function G
introduced in (29) before we continue. Since F is continuously differentiable
and, by the second statement of the theorem,5 |p(t; s)− p(t; s0)| ≤ K|s− s0|eLt
we can estimate

G(t; s) =

∫ 1

0

∇pF (t; (1− r)p(t; s) + rp(t; s0))dr =

=

∫ 1

0

(∇pF (t; p(t; s0)) + (∇pF (t; (1− r)p(t; s) + rp(t; s0))−∇pF (t; p(t; s0)))) dr =

=

∫ 1

0

∇pF (t; p(t; s0))dr︸ ︷︷ ︸
=∇pF (t,p(t;s0))

+

∫ 1

0

∇pF (t; (1− r)p(t; s) + rp(t; s0))−∇pF (t; p(t; s0))︸ ︷︷ ︸
=o(|s−s0|)since F∈C1

dr =

= ∇pF (t, p(t; s0)) + o(|s− s0|)

where we used that F ∈ C1 and thus

∇pF (t; (1− r)p(t; s) + rp(t; s0))−∇pF (t; p(t; s0)) ≤

≤ o

(
sup
r∈[0,1]

|(1− r)p(t; s) + rp(t; s0)− p(t; s0)|

)
=

5Which is valid since if p′0(s) is continuous then p′(s) is bounded on compact sets by some
constant K. Therefore |p0(s) − p0(s0)| = |p′0(s1)||s − s0| ≤ K|s − s0| by the mean value
theorem for derivatives.
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= o

(
sup
r∈[0,1]

(1− r) |p(t; s) + p(t; s0)|

)
≤ o

(
KeLt|s− s0|

)
= o(|s− s0|),

where we used the second statement of the proof and |1 − r| ≤ 1 in the last
equality. We have therefore shown that

G(t; s) = ∇pF (t, p(t; s0)) + o(|s− s0|) (35)

We continue to write down the differential equation for v(t; s)−(s−s0)p′0(s0)w(t; s0),
where we have used the notation v(t; s) = p(t; s)− p(t; s0),

∂ (v(t; s)− (s− s0)p′0(s0)w(t; s0))

∂t
=

= G(t; s)v(t; s) + (s− s0)p′0(s0)∇pF (t, p(t; s0))w(t; s0) =

= ∇pF (t, p(t; s0)) (v(t; s)− (s− s0)p′0(s0)w(t; s0)) + o(|s− s0|)v(t; s)︸ ︷︷ ︸
=o(|s−s0|)

,

where we also used (35) in the final step. Also, at t = 0 we have, using that
w(0, s0) = 1∣∣v(0; s)− (s− s0)p′0(s0)w(0; s0)

∣∣ =
∣∣p0(s)−p0(s0)−p′0(s0)(s− s0)

∣∣ = o(|s− s0|),

where we have used that p0 ∈ C1 and Taylor’s theorem in the last equality.
To summarize, we have shown that χ(t; s, s0) = v(t; s)−(s−s0)p′0(s0)w(t; s0)

satisfies
∂χ(t; s, s0)

∂t
= ∇pF (t, p(t; s0))χ(t; s, s0) + o(|s− s0|)

and
χ(t; s, s0) = o(|s− s0|).

Thus form Lemma 2 it follows that |χ(t;s,s0)|
|s−s0| → 0 as |s− s0| → 0. Writing this

in terms of p(t; s) we arrive at

|p(t; s)− p(t; s0)− (s− s0)p′0(s0)w(t; s0)|
|s− s0|

→ 0 as s→ s0

which is the same as
∂p(t; s)

∂s
= p′0(s0)w(t; s0).

5 Existence and Uniqueness of Solutions.

So far we have show that we can find a C1 solutions to the characteristic equa-
tions. As mentioned before there are some difficulties related to this method.
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The first difficulty (that we will consider in this section) is that the character-
istic lines might intersect and form a shock where the solution is not continuous
- not to mention not differentiable. Or alternatively, diverge and create a region
where the solution is not defined.

The second difficulty is that the initial line {(f(s), g(s)); s ∈ (−α, α)} may
be a characteristic. In this case we might have either infinitely many or no
solutions.

The third difficulty is that the solution to the characteristic equations are
(x(t; s), y(t; s), z(t; s)) where z(t; s) = u(x(t; s), y(t; s)). Given this expression
for u is not clear what u is at a point (x, y) unless we can invert the map
(t; s)→ (x(t; s), y(t; s)) and find an expression of (t; s) in terms of (x, y).

In this section we will try to develop a theory to handle these problems.
In particular, we will show that none of these bad things happens close to the
initial curve if we have good C1 boundary data h(s) and the coefficients a and
b and f(s) and g(s) and h(s) satisfy certain compatibility conditions.

To derive the compatibility conditions we assume that we have a solution
u ∈ C1 to the PDE

a(x, y, u)ux + b(x, y, u)uy = c(x, y, u) (36)

u(f(s), g(s)) = h(s) for s ∈ (−α, α). (37)

Furthermore we assume that f, g, h ∈ C1. We may differentiate (37) with respect
to s and conclude that

f ′(s)ux(f(s), g(s)) + g′(s)uy(f(s), g(s)) = h′(s). (38)

Writing equations (36) and (38) as a system of equations we get[
a
(
f(s), g(s), h(s)

)
a
(
f(s), g(s), h(s)

)
f ′(s) g′(s)

] [
ux
(
f(s), g(s), h(s)

)
uy
(
f(s), g(s), h(s)

) ] (39)

=

[
c
(
f(s), g(s), h(s)

)
h′(s)

]
.

We immediately see that unless we can solve the system (39) we can not
solve the PDE (36) with initial data (37).

Remember that we may always find a solution to (39) at a point s0 if the
determinant

det

([
a
(
f(s), g(s), h(s)

)
a
(
f(s), g(s), h(s)

)
f ′(s) g′(s)

])
6= 0.

We formulate this insight as a Lemma.

Lemma 3. A necessary condition in order to solve (36) with initial data (37)
is that (39) is solvable at each point s ∈ (−α, α).

In order to find sufficient conditions, at least in a small neighborhood around
a point, we will need the inverse function theorem which we state without proof.
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Theorem 3. [The Inverse Function Theorem.] Suppose that Ψ ∈ C1(D;Rn)
for some open set D ⊂ Rn and that Ψ′(x0) is invertible for some x0 ∈ D and
y0 = Ψ(x0). Then

1. there exist open subsets U ⊂ Rn and V ⊂ Rn such that x0 ∈ U and y0 ∈ V
and Ψ is one-to-one on U and Ψ(U) = V . In particular Ψ has an inverse
Ψ−1 defined in V : Ψ−1(Ψ(x)) = x for all x ∈ U .

2. The inverse Ψ−1 of Ψ is a C1(V ;U) function.

With the inverse function Theorem in place we are able to prove the main
existence Theorem for first order PDE

Theorem 4. Let f, g, h ∈ C1(−α, α) and a, b, c ∈ C1(R3;R) be given functions
and furthermore assume that there exist an s0 ∈ (−α, α) such that

det

([
a
(
f(s0), g(s0), h(s0)

)
a
(
f(s0), g(s0), h(s0)

)
f ′(s0) g′(s0)

])
6= 0. (40)

Then there exist an open neighbourhood in R2 around (f(s0), g(s0)) where
the following initial value problem

a(x, y, u)∂u∂x + b(x, y, u)∂u∂y = c(x, y, u)

u(f(s), g(s)) = h(s) for s ∈ (−α, α),

has a unique solution u(x, y).

Before we prove the Theorem we remind ourselves of the notation we use
(which is terribly confusing). We will denote the partial differentials by ∇:

∇(t,s) =

[
∂

∂t
,
∂

∂s

]
.

Use D for the total derivative

D(t,s) =

[
d

dt
,
d

ds

]
.

Proof of Theorem 4: From Theorem 1 we know that there exists a unique a
solution to the characteristic equations

dx(t;s)
dt = a(x, y, z) x(0; s) = f(s)

dy(t;s)
dt = b(x, y, z) x(0; s) = g(s)

dz(t;s)
dt = c(x, y, z) x(0; s) = h(s),

(41)

for t ∈ (−ε, ε). Moreover the solution (x(t; s), y(t; s), z(t; s)) is in C1 by Theorem
2.



5 EXISTENCE AND UNIQUENESS OF SOLUTIONS. 21

We may therefore define a C1 mapping Ψ(t; s) = (x(t; s), y(t; s))T . Since
(x, y) solves the characteristic equations we have, with the notation Ψ′(·) =
D(t;s)Ψ(t; s)b(·),

Ψ′(0, s0) =

[
dx(0;s0)

dt
dx(0;s0)
ds

dy(0;s0)
dt

dy(0;s0)
ds

]
=

[
a(f(s0), g(s0), h(s0)) f ′(s0)
b(f(s0), g(s0), h(s0)) g′(s0)

]
where we have used that x(0; s0) = f(s0) and y(0; s0) = g(s0). From condition
(40) we know that

det
(
Ψ′(0; s0)

)
= det

([
a(f(s0), g(s0), h(s0)) f ′(s0)
b(f(s0), g(s0), h(s0)) g′(s0)

])
6= 0.

It follows, from the inverse function Theorem, that Ψ(t; s) has a C1 inverse Ψ−1

in some open neighbourhood U of (0, s0). In particular there exist a representa-
tion (s(x, y), t(x, y)) = Ψ−1(x, y) and we may write u(x, y) = z(t(x, y); s(x, y)).

This shows that there is a C1−function u(x, y).
We still need to show that u is a solution to the PDE. This we do next.
If we denote by I the identity matrix then we have, by the chain rule,

I = D(t,s)

(
Ψ−1(Ψ(t; s))

)
=
(
∇(x,y)Ψ

−1(Ψ(t; s))
)
D(t,s)Ψ(t; s).

Multiplying both sides (from the left) by the inverse of DΨ(t; s) which we denote

by (DΨ(t; s))
−1

we get, after reversing the order of the equality,

∇(x,y)Ψ
−1(Ψ(t; s)) =

(
D(t,s)Ψ(t; s)

)−1
=

1

adyds − b
dx
ds

[
dy
ds −dxds
−b a

]
. (42)

But we may also calculate

∇(x,y)Ψ
−1(Ψ(t; s)) =

[
dt
dx

dt
dy

ds
dx

ds
dy

]⌊
Ψ(t;s)

. (43)

In order to verify that u is a solution we start to claculate.

a(x, y, u)
∂u(x, y)

∂x
+ b(x, y, u)

∂u(x, y)

∂y

=
[

∂u(x,y)
∂x

∂u(x,y)
∂y

] [
a(x, y, u)
b(x, y, u)

]
=

{
to be
continued...

}
. (44)

Noticing that, by the chain rule and u(x, t) = z(t(x, y); s(x, y)),

∂u(x, y)

∂x
=
∂z(t(x, y); s(x, y))

∂x
=
dt

dx

dz

dt
+
ds

dx

dz

ds

and
∂u(x, y)

∂y
=
∂z(t(x, y); s(x, y))

∂y
=
dt

dy

dz

dt
+
ds

dy

dz

ds
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we may continue (44)

=
[
dz
dt

dz
ds

] [ dt
dx

dt
dy

ds
dx

ds
dy

] [
a(x, y, u)
b(x, y, u)

]
= (45)

=
[
dz
dt

dz
ds

]
∇(x,y)Ψ

−1(Ψ(t; s))

[
a(x, y, u)
b(x, y, u)

]
(46)

where we have used the second representation formula for DΨ−1 (43). We may
continue (46) by substituting dz

dt = c(x, y, z) and the use formula (42)

=
1

adyds − b
dx
ds

[
dz
dt

dz
ds

] [ dy
ds −dxds
−b a

] [
a(x, y, u)
b(x, y, u)

]
= c(x, y, u), (47)

where we used that dz
dt = c in the last trivial calculation. Putting (44), (46) and

(47) together we see that

a(x, y, u)
∂u(x, y)

∂x
+ b(x, y, u)

∂u(x, y)

∂y
= c(x, y, u),

so u is indeed a solution to the PDE.
We have therefore shown that we may solve first order PDEs by the method

of characteristics, at least locally (that is for small t). To actually write down
a solution in an explicit form is usually much harder. This is just the nature
of advanced mathematics - that we cannot in general write down explicit solu-
tions. However, the method shows that solutions exists and that they are well
behaved for small t. To actually solve the PDE most people would use numerical
methods.

In the beginning of this section we listed three difficulties with the method
of characteristics. The preceding theorem shows that if (40) is satisfied at a
point s0 then there is a small neighbourhood where the initial line is not a
characteristic and that the characteristics do not intersect in this neighbourhood
- that is we have no shocks close to C1 initial data.

In relation to the third difficulty we can only show that we can invert the
relation (x(t; s), y(t; s)) - to actually calculate (s(x, y), t(x, y)) might be very
difficult. But the deeper we submerge in the theory of PDE the more we will
have to rely on abstract theorems so we might as well get used to it.


