
DD2431 Machine Learning

Lab 1: Decision Trees

Python version

Örjan Ekeberg

September 10, 2015

1 Preparations

In this lab you will use a set of predefined Python functions to build and
manipulate decision trees. In order to run this, you need to have Python
installed. We also use the Qt graphics library for plotting. It is possible to
do the lab without using the plotting functions, but then you will not be
able to see the generated decision trees.

2 MONK datasets

This lab uses the artificial MONK dataset from the UC Irvine repository.
The MONK’s problems are a collection of three binary classification prob-
lems MONK-1, MONK-2 and MONK-3 over a six-attribute discrete domain.
The attributes a1, a2, a3, a4, a5, a6 may take the following values:

a1 ∈ {1, 2, 3} a2 ∈ {1, 2, 3} a3 ∈ {1, 2}
a4 ∈ {1, 2, 3} a5 ∈ {1, 2, 3, 4} a6 ∈ {1, 2}

Consequently, there are 432 possible combinations of attribute values.
The true concepts underlying each MONK’s problem are given by table

1. Each one of the datasets has properties which makes them hard to learn.
Can you guess which of the three problems is most difficult for a decision
tree algorithm to learn?

The data consists of three separate datasets MONK-1, MONK-2 and
MONK-3. Each dataset is further divided into a training and test set,
where the first one is used for learning the decision tree, and the second

1

Table 1: True concepts behind the MONK datasets

MONK-1 (a1 = a2) ∨ (a5 = 1)

MONK-2 ai = 1 for exacly two i ∈ {1, 2, . . . , 6}
MONK-3 (a5 = 1 ∧ a4 = 1) ∨ (a5 6= 4 ∧ a2 6= 3)

MONK-3 has 5% additional noise (misclassifications) in the training set.

Table 2: Characteristics of the three MONK datasets

Name # train # test # attributes # classes

MONK-1 124 432 6 2

MONK-2 169 432 6 2

MONK-3 122 432 6 2

one to evaluate its classification accuracy (see table 2). The datasets are
available in the file monkdata.py. In particular, six variables are defined
which contain the datasets: monk1, monk1test, monk2, monk2test, monk3
and monk3test. Each dataset is a sequence (more precisely, a tuple) of
instances of the class Sample, defined in the same file.

You can access the data in your own Python scripts by importing the
monkdata.py file as a module like this:

import monkdata as m

This makes the variable m a shorthand for the module so that you can
access the datasets by writing m.monk1, etc.

3 Entropy

In order to decide on which attribute to split, decision tree learning algo-
rithms such as ID3 and C4.5 use a statistical property called information
gain. It measures how well a particular attribute distinguishes among dif-
ferent target classifications. Information gain is measured in terms of the
expected reduction in the entropy or impurity of the data. The entropy of
an arbitrary collection of examples is measured by

Entropy(S) = −
∑
i

pi log2 pi (1)

2

in which pi denotes the proportion of examples of class i in S. The monk
dataset is a binary classification problem (class 0 or 1) and therefore equation
(1) simplifies to

Entropy(S) = −p0 log2 p0 − p1 log2 p1 (2)

where p0 and p1 = 1− p0 are the proportions of examples belonging to class
0 and 1.

Assignment 1: The file dtree.py defines a function entropy which calcu-
lates the entropy of a dataset. Import this file along with the monks datasets
and use it to calculate the entropy of the training datasets.

Dataset Entropy

MONK-1

MONK-2

MONK-3

4 Information Gain

The information gain measures the expected reduction in impurity caused by
partitioning the examples according to an attribute. It thereby indicates the
effectiveness of an attribute in classifying the training data. The information
gain of an attribute A, relative to a collection of examples S is defined as

Gain(S,A) = Entropy(S)−
∑

k∈values(A)

|Sk|
|S|

Entropy(Sk) (3)

where Sk is the subset of examples in S for the attribute A has the value k.

Assignment 2: Use the function averageGain (defined in dtree.py) to
calculate the expected information gain corresponding to each of the six at-
tributes. Note that the attributes are represented as instances of the class
Attribute (defined in monkdata.py) which you can access via m.attributes[0],
..., m.attributes[5].

Information Gain

Dataset a1 a2 a3 a4 a5 a6
MONK-1

MONK-2

MONK-3

3

Based on the results, which attribute should be used for splitting the exam-
ples at the root node?

5 Building Decision Trees

Split the monk1 data into subsets according to the selected attribute using
the function select (again, defined in dtree.py) and compute the infor-
mation gains for the nodes on the next level of the tree. Which attributes
should be tested for these nodes?

For the monk1 data draw the decision tree up to the first two levels and
assign the majority class of the subsets that resulted from the two splits
to the leaf nodes. You can use the predefined function mostCommon (in
dtree.py) to obtain the majority class for a dataset.

Now compare your results with that of a predefined routine for ID3. Use
the function buildTree(data, m.attributes) to build the decision tree.
If you pass a third, optional, parameter to buildTree, you can limit the
depth of the generated tree.

You can use print to print the resulting tree in text form, or use the
function drawTree from the file drawtree.py to draw a graphical represen-
tation.

Assignment 3: Build the full decision trees for all three Monk datasets
using buildTree. Then, use the function check to measure the performance
of the decision tree on both the training and test datasets.

For example to built a tree for monk1 and compute the performance on
the test data you could use

import monkdata as m

import dtree as d

t=d.buildTree(m.monk1, m.attributes);

print(d.check(t, m.monk1test))

Compute the train and test set errors for the three Monk datasets for
the full trees.

Etrain Etest
MONK-1

MONK-2

MONK-3

4

6 Pruning

The idea of reduced error pruning is to consider each node in the tree as a
candidate for removal. A node is removed if the resulting pruned tree per-
forms at least as well as the original tree over a separate validation dataset,
i.e. a dataset not used during training. When a node is removed, the sub-
tree rooted at that node is replaced by a leaf node, to which the majority
classification of examples in that node is assigned.

For the purpose of pruning, we have to split our original training data
into one training set for building the tree and one validation set for pruning.
Notice, that using the test set for validation would be cheating because we
would then no longer be able to use the test set for independently estimat-
ing the true error of our pruned decision tree. Instead, we will randomly
partition the original training set into training and validation set. This can
be done by defining a function which randomly reorders the data samples
and returns the first and second parts separately:

import random

def partition(data, fraction):

ldata = list(data)

random.shuffle(ldata)

breakPoint = int(len(ldata) * fraction)

return ldata[:breakPoint], ldata[breakPoint:]

monk1train, monk1val = partition(m.monk1, 0.6)

In the file dtree.py there is a utility function allPruned which returns
a sequence of all possible ways a given tree can be pruned.

Write code which performs the complete pruning by repeatedly calling
allPruned and picking the tree which gives the best classifiction perfor-
mance on the validation dataset. You should stop pruning when all the
pruned trees perform worse than the current candidate.

Assignment 4: Evaluate the effect pruning has on the test error for the
monk1 and monk3 datasets, in particular determine the optimal partition
into training and pruning by optimizing the parameter fraction. Plot the
classification error on the test sets as a function of the parameter fraction
∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8}.

5

