
DT2300 Sound in Interaction Lab 2 & 3

In the two laboratory sessions, you will tackle three levels of increasing com-

plexity. In the fist laboratory session you should finish level 1 and level 2. In

the second session, you have to finish level 3. Each level contains several tasks

for you to choose from. You finish a task by presenting your finished results to

the lab session supervisor. If you haven’t finished level 1 and 2 when the first

laboratory session has ended, you have to finish them by yourself before the

next session so that they can be presented at the start of the second lab session.

Read the instructions for each task carefully and ask questions if something

is unclear. Each task has a list of suggested objects that will help you solve the

task. Look at the help files for the suggested objects and make sure you under-

stand how they work. Make sure that your solution fulfils all the requirements

in the instructions before you present your work.

• The lab is equipped with computers, but if you prefer it you can use your

own laptop.

• To log in to the lab computers, use the user name ”stud101Lab” and the

password ”stud101Lab”.

• Create a folder and save all your files to one place. When the lab session

is done, back up your files and then delete them from the lab computer.

• Save often and save to different files, maintaining a history of your work.

• If you open files in pd by double clicking them in Explorer a new instance

of pd will be created which might lead to confusing results. Use the file-

menu in pd to avoid this.

• The integrated help in pd contains enough information for you to be able

to solve all the tasks below. Right click on an object and select ”Help” to

get more info on that object

1



Level 1: Getting Started

Some simple exercises that cover the basic pd objects that you need to be familiar

with to solve the tasks in level 1 & 2. You must finish all tasks before advancing

to the next level.

Bang by comparison

Create a variable number ”A” (e.g. a slider or a number-box). Compare that

number to another number ”B”. The comparison should output 1 when ”A” is

bigger then ”B” and 0 otherwise. Bang once when the comparison changes from

0 to 1. Important objects to explore are VSlider, Number, Bang, [<], [select],

[change].

Combine comparisons

Create a variable number ”A” (e.g. a slider or a number-box). Compare that

number to two other numbers ”B” and ”C”. The comparison should output

1 when ”B” < ”A” < ”C” and 0 otherwise. Bang once when the comparison

changes from 0 to 1. Important new objects to explore are [∗].

Beep

Create a toggle button that controls the amplitude of a sinus oscillator. When

the toggle is active, the sound from the oscillator should be heard. When the

toggle is inactive, there should be no sound. The oscillator should have a fre-

quency of 900 Hz. Important new objects to explore are Toggle, [∗˜], [cycle˜].

Beep by comparisons

Combine a comparison like the one in task 2 (”B” < ”A” < ”C”) with the beep

from task 3 so that the sound is heard only when the comparison is true.

Map to a scale

Create a sawtooth oscillator and two variable numbers. Use the variable num-

bers to control the amplitude and pitch of the oscillator. Limit the variable

numbers so that the amplitude control can vary between 0 and 1, while the

2



pitch control varies between the C note at 130.813 Hz (MIDI note nr 48) and

the C note at 523.251 Hz (MIDI note nr 72). In addition, the pitch control

should change in steps of 2 semitones, creating a whole note scale. Important

new objects to explore are [int], [mtof], [phasor˜].

Level 2: Musical Instruments

Create real time musical interaction by mapping the data from the MoCap system

to synthesised sounds in pure data. Use the provided patch for a reference on

how to receive data from the MoCap system in pd. Select two tasks and solve

them to move on to the next level.

Theremin

Create a Theremin-like instrument by controlling a sound using the position

of your trackable object. Map the x, y, and z position of the object to the

amplitude, pitch and timbre of the sound, respectively. Make sure that the

possible values for the amplitude and pitch are reasonable and create an in-

teraction where you can control the sound reliably enough to play a simple

melody. Smooth the incoming MoCap data to reduce uncontrolled variations

in the sound. Create the sound by generating a sawtooth wave and modify the

timbre with a low pass filter. Important objects to explore are [mavg], [lop˜].

Drum set

Create a virtual drum set by defining a set of 3 squares in the MoCap space.

Detect when your object hits a square and play a sound. A square is considered

hit when the object passes through it in one direction (but not the other). The

sound should be played only once when the object hits the square. Connect

the different squares to different sounds. One sound should consist of band

pass filtered noise, emulating a snare drum. Another sound, emulating a hi-hat

sound, should consist of three sawtooth waves that are multiplied with each

other and sent through a high pass filter. Choose whatever method you like

to produce the third sound. The sounds should be perceived as equally loud.

Important objects to explore are [noise˜], [bp˜], [hip˜], [line˜].

3



Velocity sensitive piano

Create a virtual piano by defining a keyboard rectangle in the MoCap space.

Detect when your object hits the rectangle and play a piano sound. The rect-

angle is considered hit when the object passes through it in one direction (but

not the other). The sound should be played only once when the object hits

the rectangle. Depending on where the object passes through the rectangle, the

resulting sound should have a different pitch, just like how each note on the

piano has a different pitch. Make sure that the pitches correspond to the notes

available on a piano. The sound should be generated by playing back a sample

of a piano note. A sound file containing a piano note will be provided in the lab

files. To achieve the difference in pitch, the playback-speed should be varied.

The amplitude of the sound should correspond to the speed of the trackable

object when it hits the keyboard rectangle. Important objects to explore are

[tabread4 ], [array], [line ].

Your own idea

If you have an idea of your own for a musical instrument, talk with the lab

session supervisor and make sure that it is practically possible and of suitable

complexity.

Level 3: Games

Create playful interaction using interactive real time audio production. Solve at

least one task to complete the lab session.

Head, Shoulders, Knees and Toes

Create a periodic rhythm and play a sound on each beat. Measure the height of

a player’s head, shoulder, knees and toes. Create a game where the player is to

move the trackable object so that it is equal in height to the measured heights, on

time with the beat, in the a predefined order. Play a sound every time a correct

height is measured and another sound if an incorrect height is measured. Reset

the game if the player gets it wrong, i.e., an incorrect measurement is detected

at the time of the beat.

4



Seek and Smash game

Choose a random point in the capture space. Guide the player to the point using

interactive sound. You can use whatever sounds you like. You should at least

map the distance to the point to the sound, but if you also use the direction to

the point it will be more effective. When the player moves the trackable object

close enough to the point you should play a sound and move the point to a new

random location in the capture space.

Your own idea

If you have an idea of your own for a game, talk with the lab session supervisor

and make sure that it is practically possible and of suitable complexity.

5


