Carrier Sense Multiple Access Technique

FEP3210

Filip Barać

2015-09-14

Overview

- CSMA
- Non-persistent CSMA
- Slotted CSMA
- CSMA/CD

Problem statement

- Collisions in medium access diminish the throughput
- ALOHA: user selfishness
- What if the users acted more 'politely'?

FIGURE 3.2: Throughput-Load of Pure and Slotted Aloha

CSMA

- Carrier Sense Multiple Access
- Listening prior to transmission
 - If channel idle -> transmit
 - If channely busy -> postpone the transmission
- The flavors of CSMA:
 - Non-persistent
 - 1-persistent
 - p-persistent
- Listening modes of IEEE 802.15.4
 - Carrier sense
 - Energy detection
 - Hybrid

CSMA problems

- Does listening solve the collision issue?
- Underlying issues
 - Finite propagation speed
 - Hidden terminal problem
 - When to retransmit?

- If channel sensed busy, postpone transmission to some random time in the future
- Assumptions for analysis:
 - Infinite user population
 - Total packet generation rate $\sim Poiss(\lambda)$
 - Equally long packets (T sec)
 - Traffic on the channel (new + retransmitted packets) $\sim Poiss(g)$
 - ullet All users equally far from each other, with propagation delay au
 - Normalized propagation time $a \triangleq \tau/T$

- The first τ seconds of transmission is the **vulnerable period**
- Transmission period duration \tilde{B} (mean value is B) is a random variable assuming values from $[T + \tau, T + 2\tau]$
- \tilde{B} comprises both useful and colliding transmissions

(b) Unsuccessful Transmission Period

- The starting instant of a cycle is a renewal point – packet scheduling is memoryless
- Idle period duration is a r.v. \tilde{I} (mean value is I)
- \widetilde{U} (mean is U) is the duration of a successful transmission
- **Throughput** *S* can be found as:

$$S = \frac{U}{B+I}$$

• The **CDF of idle period** is:

$$F_I(x) = \text{Prob}[\tilde{I} \le x] = 1 - \text{Prob}[\tilde{I} > x]$$

= $1 - P[\text{No packet scheduling during } x] = 1 - e^{-gx}$

- Scheduling is memoryless -> renewal point -> $\tilde{I} \sim Exp(g)$
- Mean duration of idle period is $I = \frac{1}{g}$

• Useful period duration:

$$U = \begin{cases} T & \text{Successful Period} \\ 0 & \text{Unsuccessful Period} \end{cases}$$

ullet If transmission success probability is P_{suc} , the **mean duration of** $\widetilde{\pmb{U}}$ is:

$$U = E[\tilde{U}] = T \cdot P_{suc} + 0 \cdot (1 - P_{suc}) = TP_{suc}$$

- Success probability is: $P_{suc} = \text{Prob}[\text{No arrival in the period } [t, t + \tau]] = e^{-g\tau}$
- Finally: $U = Te^{-g\tau}$

- Define \tilde{Y} as a r.v. such that $t + \tilde{Y}$ is the time since the <u>last interfering packet</u> was scheduled within the period that started at time t
- Busy period is: $\tilde{B} = T + \tau + \tilde{Y}$
- It follows that nothing was transmitted during $[t + \tilde{Y}, t + \tau]$
- The CDF and PDF of \widetilde{Y} :

(b) Unsuccessful Transmission Period

$$F_Y(y) = \text{Prob}[\tilde{Y} \le y] = \text{Prob}[\text{No packet arrival during } \tau - y] = e^{-g(\tau - y)}, \ 0 \le y \le \tau$$

$$f_{Y}(y) = e^{-g\tau}\delta(y) + ge^{-g(\tau - y)}$$

$$E[\tilde{Y}] = \tau - \frac{1 - e^{-g\tau}}{g}$$

$$B = E[T + \tau + \tilde{Y}] = T + 2\tau - \frac{1 - e^{-g\tau}}{\sigma}$$

$$S = \frac{U}{B + I} = \frac{Te^{-g\tau}}{T + 2\tau - \frac{1 - e^{-g\tau}}{g} + \frac{1}{g}} = \frac{gTe^{-g\tau}}{g(T + 2\tau) + e^{-g\tau}}$$

• If we define G=gT then **throughput** becomes:

$$S = \frac{Ge^{-aG}}{G(1+2a)+e^{-aG}}.$$

FIGURE 4.2: Throughput-Load of Nonpersistent CSMA

Slotted CSMA

- Time divided into slots of duration τ
- Users can send only at slot boundaries
- Assumptions for analysis:
 - Infinite user population
 - Total packet generation rate $\sim Poiss(\lambda)$
 - ullet All users equally far, with propagation delay au
 - Equally long packets (T sec), where T is an integer multiple of τ
 - Traffic on the channel (new + retransmitted packets) $\sim Poiss(g)$
 - Normalized propagation time $a \triangleq \tau/T$
 - Carrier sensing is instantaneous

FIGURE 4.6: Slotted Nonpersistent CSMA Packet Timing

- ullet Busy period $ilde{B}$, idle period $ilde{I}$ (at least one-slot long)
- Probability that \tilde{I} is exactly k slots-long:

$$P[\tilde{I} = k\tau] = (e^{-g\tau})^{k-1}(1 - e^{-g\tau})$$
 $k = 1, 2, ...$

- Mean length of idle period is: $I = \frac{\tau}{1 e^{-g\tau}}$
- From model definition it follows that both successful and wasted time periods last for $T+\tau$
- Note: a busy period may comprise either of the two!

• The probability that busy period lasts exactly $k(T + \tau)$:

Prob
$$[\tilde{B} = k(T + \tau)] = (1 - e^{-g\tau})^{k-1}e^{-g\tau}$$
 $k = 1, 2, ...$

Mean length of busy period is:

$$B = \frac{T + \tau}{e^{-g\tau}}$$

• During each successful transmission period, T sec is spent on information transfer; within one \tilde{B} , there exists $\frac{\tilde{B}}{(T+\tau)}$ transmission periods (successful and/or unsuccessful)

• **Mean useful time** is hence:

$$E[\tilde{U}] = T \frac{B}{T + \tau} P_{suc}$$

where:

 P_{suc} = Prob[Successful Transmission Period]

=
$$\frac{\text{Prob}[\text{Single arrival in last mini-slot}]}{\text{Prob}[\text{Some arrivals in last mini-slot}]} = \frac{g\tau e^{-g\tau}}{1 - e^{-g\tau}}$$

• The throughput is:

$$S = \frac{U}{B+I} = \frac{T\frac{B}{T+\tau}P_{suc}}{\frac{T+\tau}{e^{-g\tau}} + \frac{\tau}{1-e^{-g\tau}}} = \frac{Tg\tau e^{-g\tau}}{T+\tau-Te^{-g\tau}}$$

- Normalizing by T: $S = \frac{aGe^{-aG}}{1 + a e^{-aG}}$
- Asymptotic case: $S_{a \to 0} = \frac{G}{1 + G}$
- The last expression is equivalent to the unslotted case when $a \to 0$

What do the curves tell us?

1-persistent is an attempt to reduce the idle period

FIGURE 4.7: Throughput-Load of Slotted 1-Persistent and Nonpersistent CSMA

CSMA/CD

- A compromised transmission is not aborted immediately -> CSMA wastes time
- Goal: shorten the B
- CSMA/CD aborts the transmission as soon as a collision is noticed
- Conflict resolution in Ethernet after m-th collision:
 - Randomly choose a number K from the set $\{0,1,\ldots,2^m-1\}$
 - Postpone the transmission for 512K bit times

CSMA/CD

User A sees:

$$\gamma = 2\tau + \tau_{cd} + \tau_{cr}$$

and completes the transmission at $t_0 + \gamma$

- B completes the transmission period at $t_1 + \gamma$
- Channel is busy for $t_1 + \gamma t_0$
- Worst case: $t_1 = t_0 + \tau$ i.e. unsuccessful period lasts for $\gamma + \tau$

FIGURE 4.8: Collision detection Timing

CSMA/CD

• Denote the length of the transmission period as \tilde{X} :

$$\tilde{X} = \begin{cases} T + \tau & \text{Successful transmission period} \\ \gamma + \tau & \text{Unsuccessful transmission period} \end{cases}$$

- Assumptions for analysis:
 - Slots of length au
 - All users sync'ed
 - Propagation delay τ
 - Both γ and T are integer multiples of τ
 - Traffic on the channel (new + retransmitted packets) $\sim Poiss(g)$
 - Normalized propagation time $a \triangleq \tau/T$
 - Carrier sensing is instantaneous, collision detection is not

Note: successful and unsuccessful periods can have different durations!

FIGURE 4.9: Slotted Nonpersistent CSMA/CD Packet Timing

ullet The **distribution of** $ilde{I}$ is the same as slotted non-per. CSMA:

$$P[\tilde{I} = k\tau] = (e^{-g\tau})^{k-1}(1 - e^{-g\tau})$$
 $k = 1, 2, ...$

- Mean duration of idle period is: $I = \frac{\tau}{1 e^{-g\tau}}$
- Success probability is also the same as slotted non-per. CSMA:

$$P_{suc}$$
 = Prob[Single transmission| at least one transmission] = $\frac{g\tau e^{-g\tau}}{1 - e^{-g\tau}}$

- A busy period consists of l transmission periods (successful and/or unsuccessful)
- Distribution and mean duration of busy period:

$$\begin{aligned} & \text{Prob} \big[\tilde{B} = k(T+\tau) + (l-k)(\gamma+\tau) \big] \\ &= e^{-g\tau} (1 - e^{-g\tau})^{l-1} \binom{l}{k} P_{suc}^k (1 - P_{suc})^{l-k} \qquad l = 1, 2, ..., \quad k = 0, 1, ..., l \\ & B = \sum_{l=1}^{\infty} \sum_{k=0}^{l} \big[k(T+\tau) + (l-k)(\gamma+\tau) \big] \text{Prob} \big[k(T+\tau) + (l-k)(\gamma+\tau) \big] \\ &= \frac{P_{suc}(T+\tau) + (1 - P_{suc})(\gamma+\tau)}{e^{-g\tau}} \end{aligned}$$

• Distribution and mean duration of useful period:

Prob
$$(\tilde{U} = kT)$$
 = Prob $[k \text{ successful transmission periods in a busy period}]$
= $\sum_{l=k}^{\infty} \text{Prob}[\tilde{B} = k(T+\tau) + (l-k)(\gamma+\tau)]$

$$U = \sum_{k=0}^{\infty} kT \operatorname{Prob} \left[\tilde{U} = kT \right] = \frac{T}{e^{-g\tau}} P_{suc}$$

• Finally, the throughput and normalized throughput are:

$$S = \frac{U}{B+I} = \frac{g\tau T e^{-g\tau}}{g\tau T e^{-g\tau} + [(1-e^{-g\tau}) - g\tau e^{-g\tau}]\gamma + \tau}.$$

$$S = \frac{aGe^{-aG}}{aGe^{-aG} + (1-e^{-aG} - aGe^{-aG})\gamma' + a}.$$

where $\gamma' = \gamma/T$

• For $\gamma' = 1$ the throughput is identical to non-per. slotted CSMA

FIGURE 4.10: Throughput-Load of Slotted Nonpersistent CSMA/CD

When to retransmit? CSMA/CA in 802.11

802.11 sender

- 1. if sensed channel idle for DIFS then transmit entire frame (no CD)
- 2. if sensed channel busy then
 - start binary exponential backoff
 - timer counts down while channel idle
 - transmit when timer expires (no interruption)
 - if no ACK, increase random backoff interval, repeat 2

802.11 receiver

• if frame received OK, return ACK after SIFS (ACK needed due to hidden terminal problem)

