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Probability vs Heuristics

Heuristic

experience-based techniques for problem solving, learning, and
discovery that give a solution which is not guaranteed to be
optimal (Wikipedia)

Typical examples:

Artificial Neural Networks

Decision Trees

Evolutionary methods

k-nearest neighbor
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Discriminative vs Generative Models

Figure from Nguyen et al. 2015. http://www.evolvingai.org/fooling
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Advantages of Probability Based Methods

Results are interpretable. More transparent and
mathematically rigorous than methods such as ANN,

Evolutionary methods.

Tool for interpreting other methods. Framework for
formalizing other methods - concept learning, least squares.

Work with sparse training data. More powerful than
deterministic methods when training data is sparse
(framework for including prior knowledge).

Easy to merge different parts of a complex system.
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Example: Automatic Speech Recognition

Speech Signal
Spectral
Analysis

Feature
Extraction

Search
and Match

Recognised Words

Acoustic Models

Lexical Models

Language Models

Representation

Constraints - Knowledge
Decoder
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Different views on probabilities

Axiomatic defines axioms and derives properties

Classical number of ways something can happen over total
number of things that can happen (e.g. dice)

Logical same, but weight the different ways

Frequency frequency of success in repeated experiments

Subjective degree of belief (basis for Bayesian statistics)
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Axiomatic definition of probabilities (Kolmogorov)

Given an event E in a event space F

1 P(E ) ≥ 0 for all E ∈ F

2 sure event Ω: P(Ω) = 1

3 E1,E2, . . . countable sequence of pairwise disjoint events, then

E1 ∪ E2 ∪ · · ·

E1

E2

· · ·

P(E1 ∪ E2 ∪ · · · ) =
∞∑

i=1

P(Ei )
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Consequences

1 Monotonicity: P(A) ≤ P(B) if A ⊆ B

B

A

Example: A = {3}, B = {odd}
2 Empty set ∅: P(∅) = 0

Example: P(A ∩ B) where A = {odd},B = {even}
3 Bounds: 0 ≤ P(E ) ≤ 1 for all E ∈ F
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More Consequences: Addition

P(A ∪ B) = P(A) + P(B)− P(A ∩ B)

A B

A ∪ B

A ∩ B

Example:

A = {1, 3, 5}, P(A) = 1
6 + 1

6 + 1
6 = 1

2

B = {5, 6}, P(B) = 1
6 + 1

6 = 1
3

A ∩ B = {5} P(A ∩ B) = 1
6

A ∪ B = {1, 3, 5, 6} P(A ∪ B) = 1
6 + 1

6 + 1
6 + 1

6 = 2
3
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More Consequences: Negation

P(Ā) = P(Ω \ A) = 1− P(A)

Ω

AΩ \ A

Example: A = {1, 2}, P(A) = 1
6 + 1

6 = 1
3

Ā = {3, 4, 5, 6}, P(Ā) = 1
6 + 1

6 + 1
6 + 1

6 = 1− 1
3
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Random (Stochastic) Variables

A random variable is a function that assigns a number x to the
outcome of an experiment

the result of flipping a coin,

the result of measuring the temperature

The probability distribution P(x) of a random variable (r.v.)
captures the fact that

the r.v. will have different values when observed and

some values occur more than others.
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Formal definition of RVs

RV = {f : Sa → Sb,P(x)}
where:

Sa = set of possible outcomes of the experiment

Sb = domain of the variable

f : Sa → Sb = function mapping outcomes to values x

P(x) = probability distribution function
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Types of Random Variables

A discrete random variable takes values from a predefined
set.

For a Boolean discrete random variable this predefined set
has two members - {0, 1}, {yes, no} etc.

A continuous random variable takes values that are real
numbers.26 2 Introduction to probability

Figure 2.1 Two different representations for discrete probabilities a) A bar
graph representing the probability that a biased 6-sided die lands on each
face. The height of the bar represents the probability: the sum of all heights
is one. b) A Hinton diagram illustrating the probability of observing different
weather types in England. The area of the square represents the probability,
so the sum of all areas is one.

Figure 2.2 Continuous probability dis-
tribution (probability density function
or pdf for short) for time taken to com-
plete a test. Note that the probability
density can exceed one, but the area
under the curve must always have unit
area.

2.2 Joint probability

Consider two random variables, x and y. If we observe multiple paired instances
Problem 2.1

of x and y, then some combinations of the two outcomes occur more frequently
than others. This information is encompassed in the joint probability distribution
of x and y which is written as Pr(x, y). The comma in Pr(x, y) can be read as the
English word “and” so Pr(x, y) is the probability of x and y. A joint probability
distribution may relate variables that are all discrete, all continuous or it may
relate discrete variables to continuous ones (see figure 2.3). Regardless, the total
probability of all outcomes (summing over discrete variables and integrating over
continuous ones), is always one.

In general we will be interested in the joint probability distribution of more
than two variables. We will write Pr(x, y, z) to represent the joint probability
distribution of scalar variables x, y, and z. We may also write Pr(x) to represent
the joint probability of all of the elements of the multidimensional variable x =
[x1, x2, . . . , xK ]T . Finally, we will write Pr(x,y) to represent the joint distribution
of all of the elements from multidimensional variables x and y.

Copyright c�2011 by Simon Prince; to be published by Cambridge University Press 2012.
For personal use only, not for distribution.
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Figure 2.1 Two different representations for discrete probabilities a) A bar
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face. The height of the bar represents the probability: the sum of all heights
is one. b) A Hinton diagram illustrating the probability of observing different
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so the sum of all areas is one.

Figure 2.2 Continuous probability dis-
tribution (probability density function
or pdf for short) for time taken to com-
plete a test. Note that the probability
density can exceed one, but the area
under the curve must always have unit
area.

2.2 Joint probability

Consider two random variables, x and y. If we observe multiple paired instances
Problem 2.1

of x and y, then some combinations of the two outcomes occur more frequently
than others. This information is encompassed in the joint probability distribution
of x and y which is written as Pr(x, y). The comma in Pr(x, y) can be read as the
English word “and” so Pr(x, y) is the probability of x and y. A joint probability
distribution may relate variables that are all discrete, all continuous or it may
relate discrete variables to continuous ones (see figure 2.3). Regardless, the total
probability of all outcomes (summing over discrete variables and integrating over
continuous ones), is always one.

In general we will be interested in the joint probability distribution of more
than two variables. We will write Pr(x, y, z) to represent the joint probability
distribution of scalar variables x, y, and z. We may also write Pr(x) to represent
the joint probability of all of the elements of the multidimensional variable x =
[x1, x2, . . . , xK ]T . Finally, we will write Pr(x,y) to represent the joint distribution
of all of the elements from multidimensional variables x and y.

Copyright c�2011 by Simon Prince; to be published by Cambridge University Press 2012.
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Figures taken from Computer Vision: models, learning and inference by Simon Prince.
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Examples of Random Variables

Discrete events: either 1, 2,
3, 4, 5, or 6.

Discrete probability
distribution
p(x) = P(d = x)

P(d = 1) = 1/6 (fair dice)

Any real number
(theoretically infinite)

Probability Distribution
Function (PDF) f (x) (NOT
PROBABILITY!!!)

P(t = 36.6) = 0

P(36.6 < t < 36.7) = 0.1

Giampiero Salvi, with contributions from A. Maki and J. Sullivan Lecture 3: Probabilistic Learning



Probability Theory Basics
Common Distributions

Bayesian Inference and Learning

Joint Probabilities

Consider two random variables x and y .

Observe multiple paired instances of x and y . Some paired
outcomes will occur more frequently.

This information is encoded in the joint probability
distribution P(x , y).

P(x) denotes the joint probability of x = (x1, . . . , xK ).

28 2 Introduction to probability

Figure 2.4 Joint and marginal probability distributions. The marginal prob-
ability Pr(x)is found by summing over all values of y (discrete case) or
integrating over y (continuous case) in the joint distribution Pr(x, y). Simi-
larly the marginal probability Pr(y) is found by summing or integrating over
x. Note that the plots for the marginal distributions have different scales
from those for the joint distribution (on the same scale, the marginals would
look larger as they sum all of the mass from one direction). a) Both x and
y are continuous. b) Both x and y are discrete. c) The random variable x
is continuous and the variable y is discrete.

we are finding the probability distribution of x regardless of (or in the absence of
information about) the value of y.

In general, we can recover the joint probability of any subset of variables, by
Problem 2.2

marginalizing over all of the others. For example, given variables, w, x, y, z, where
w is discrete and z is continuous, we can recover Pr(x, y) using

Pr(x, y) =
�

w

�
Pr(w, x, y, z) dz. (2.2)

2.4 Conditional probability

The conditional probability of x given that y takes value y∗ tells us the relative
propensity of the random variable x to take different outcomes given that the
random variable y is fixed to value y∗. This conditional probability is written as
Pr(x|y = y∗) . The vertical line “|” can be read as “given”.

The conditional probability Pr(x|y = y∗) can be recovered from the joint dis-
tribution Pr(x, y). In particular, we examine the appropriate slice Pr(x, y = y∗)
of the joint distribution (figure 2.5). The values in the slice tell us about the rel-
ative probability that x takes various values having observed y = y∗, but do not
themselves form a valid probability distribution; they cannot sum to one as they
constitute only a small part of the joint distribution which did itself sum to one.
To calculate the conditional probability distribution, we hence normalize by the
total probability in the slice

Copyright c�2011 by Simon Prince; to be published by Cambridge University Press 2012.
For personal use only, not for distribution.

← discrete joint pdf

Figure from Computer Vision: models, learning and inference by Simon Prince.
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Joint Probabilities (cont.)

a) b) c)

d) e) f)

Figure from Computer Vision: models, learning and inference by Simon Prince.
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Marginalization

The probability distribution of any single variable can be recovered
from a joint distribution by summing for the discrete case

P(x) =
∑

y

P(x , y)

and integrating for the continuous case

P(x) =

∫

y
P(x , y) dy
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Marginalization (cont.)

a) b) c)

Figure from Computer Vision: models, learning and inference by Simon Prince.
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Conditional Probabilities

P(A|B)

The probability of event A when we know that event B has
happened

Note: different from the probability that event A and event B will
happen
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Conditional Probabilities

P(A|B) 6= P(A ∩ B)

Ω

A B

A ∩ B
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Conditional Probabilities

P(A|B) 6= P(A ∩ B)

Ω

A B

A ∩ B
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Conditional Probabilities

P(A|B) 6= P(A ∩ B)

A B ≡ Ω

A ∩ B
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Conditional Probabilities

P(A|B) =
P(A ∩ B)

P(B)

A B ≡ Ω

A ∩ B
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Conditional Probability (Random Variables)

The conditional probability of x given that y takes value y∗

indicates the different values of r.v. x which we’ll observe
given that y is fixed to value y∗.

The conditional probability can be recovered from the joint
distribution P(x , y):

P(x | y = y∗) =
P(x , y = y∗)

P(y = y∗)
=

P(x , y = y∗)∫
x
P(x , y = y∗) dx

Extract an appropriate slice, and then normalize it.2.4 Conditional probability 29

Figure 2.5 Conditional Probability. Joint pdf of x and y and two conditional
probability distributions Pr(x|y = y1) and Pr(x|y = y2). These are formed
by extracting the appropriate slice from the joint pdf and normalizing so
that the area is one. A similar operation can be performed for discrete
distributions.

Pr(x|y = y∗) =
Pr(x, y = y∗)�
Pr(x, y = y∗)dx

=
Pr(x, y = y∗)
Pr(y = y∗)

, (2.3)

where we have used the marginal probability relation (Equation 2.1) to simplify the
denominator. It is common to write the conditional probability relation without
explicitly defining the value y = y∗ to give the more compact notation

Pr(x|y) =
Pr(x, y)

Pr(y)
. (2.4)

This relationship can be re-arranged to give

Pr(x, y) = Pr(x|y)Pr(y), (2.5)

and by symmetry we also have

Pr(x, y) = Pr(y|x)Pr(x). (2.6)

When we have more than two variables, we may repeatedly take conditional
Problem 2.3

probabilities to divide up the joint probability distribution into a product of terms

Pr(w, x, y, z) = Pr(w, x, y|z)Pr(z)

= Pr(w, x|y, z)Pr(y|z)Pr(z)

= Pr(w|x, y, z)Pr(x|y, z)Pr(y|z)Pr(z). (2.7)

Copyright c�2011 by Simon Prince; to be published by Cambridge University Press 2012.
For personal use only, not for distribution.

Figure from Computer Vision: models, learning and inference by Simon Prince.
Giampiero Salvi, with contributions from A. Maki and J. Sullivan Lecture 3: Probabilistic Learning



Probability Theory Basics
Common Distributions

Bayesian Inference and Learning

Bayes’ Rule

if

P(A|B) =
P(A ∩ B)

P(B)

then
P(A ∩ B) = P(A|B)P(B) = P(B|A)P(A)

and

P(A|B) =
P(B|A)P(A)

P(B)
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Bayes’ Rule (random variables)
Bayes’ Rule

P(y | x) = P(x | y)P(y)
P(x)

=
P(x | y)P(y)∑
y P(x | y)P(y)

Each term in Bayes’ rule has a name:

P(y | x)← Posterior (what we know about y given x .)

P(y)← Prior (what we know about y before we consider x .)

P(x | y)← Likelihood (propensity for observing a certain value of x

given a certain value of y)

P(x)← Evidence (a constant to ensure that the l.h.s. is a valid

distribution)
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Independence

two events are independent if the joint distribution can be
factorized: P(A ∩ B) = P(A)P(B)

this means that:

P(A|B) =
P(A ∩ B)

P(B)
=

P(A)P(B)

P(B)
= P(A)

knowing that B has happened does not tell us
anything about A
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Bernoulli

Domain: binary variables (x ∈ {0, 1})
Parameters: λ = Pr(x = 1), λ ∈ [0, 1]

Then Pr(x = 0) = 1− λ, and

Pr(x) = λx(1− λ)1−x =

{
λ, if x = 1,
1− λ, if x = 0
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Categorical

Domain: discrete variables (x ∈ {x1, . . . , xK})
Parameters: λ = [λ1, . . . , λK ]

with λk ∈ [0, 1] and
∑K

k=1 λk = 1
26 2 Introduction to probability

Figure 2.1 Two different representations for discrete probabilities a) A bar
graph representing the probability that a biased 6-sided die lands on each
face. The height of the bar represents the probability: the sum of all heights
is one. b) A Hinton diagram illustrating the probability of observing different
weather types in England. The area of the square represents the probability,
so the sum of all areas is one.

Figure 2.2 Continuous probability dis-
tribution (probability density function
or pdf for short) for time taken to com-
plete a test. Note that the probability
density can exceed one, but the area
under the curve must always have unit
area.

2.2 Joint probability

Consider two random variables, x and y. If we observe multiple paired instances
Problem 2.1

of x and y, then some combinations of the two outcomes occur more frequently
than others. This information is encompassed in the joint probability distribution
of x and y which is written as Pr(x, y). The comma in Pr(x, y) can be read as the
English word “and” so Pr(x, y) is the probability of x and y. A joint probability
distribution may relate variables that are all discrete, all continuous or it may
relate discrete variables to continuous ones (see figure 2.3). Regardless, the total
probability of all outcomes (summing over discrete variables and integrating over
continuous ones), is always one.

In general we will be interested in the joint probability distribution of more
than two variables. We will write Pr(x, y, z) to represent the joint probability
distribution of scalar variables x, y, and z. We may also write Pr(x) to represent
the joint probability of all of the elements of the multidimensional variable x =
[x1, x2, . . . , xK ]T . Finally, we will write Pr(x,y) to represent the joint distribution
of all of the elements from multidimensional variables x and y.

Copyright c�2011 by Simon Prince; to be published by Cambridge University Press 2012.
For personal use only, not for distribution.
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Gaussian distributions: One-dimensional

aka univariate normal distribution

Domain: real numbers (x ∈ R)

f (x |µ, σ2) = N(µ, σ2) =
1√
2πσ

exp

[
−(x − µ)2

2σ2

]

1.92 1.94 1.96 1.98 2 2.02 2.04 2.06 2.08
0

5

10

15

2σ

µ

x

f(
x
)
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Gaussian distributions: One-dimensional

aka univariate normal distribution

Domain: real numbers (x ∈ R)

f (x |µ, σ2) = N(µ, σ2) =
1√
2πσ

exp

[
−(x − µ)2

2σ2

]

1.92 1.94 1.96 1.98 2 2.02 2.04 2.06 2.08
0

5

10

15

f(x1) = 8.1

P(x2<x<x3) = 0.15

x

f(
x
)
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Gaussian distributions: D Dimensions

aka multivariate normal distribution

Domain: real numbers (x ∈ RD)

x =




x1
x2
. . .
xD


 µ =




µ1
µ2
. . .
µD


 Σ =




σ211 σ12 . . . σ1D
σ21 . . .
. . .
σD1 . . . σ2DD




f (x|µ,Σ) =
exp

[
−1

2(x− µ)TΣ−1(x− µ)
]

(2π)
D
2 |Σ| 12
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Covariance and Independence

covariance is “linear” dependency

dependent variables may have zero covariance

in Gaussian (and few other distribution) zero covariance is
equivalent to independence

f (x|µ,Σ) =
exp

[
−1

2(x− µ)TΣ−1(x− µ)
]

(2π)
D
2 |Σ| 12

Giampiero Salvi, with contributions from A. Maki and J. Sullivan Lecture 3: Probabilistic Learning
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Gaussian distributions

f (x|µ,Σ) =
exp

[
−1

2(x− µ)TΣ−1(x− µ)
]

(2π)
D
2 |Σ| 12

Eigenvalue decomposition of the covariance matrix:

Σ = λ R Σdiag RT

x1

x2

x1

x2

x1
x2
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Beta and Dirichlet (PDF over Probabilities)

Beta

Domain: real numbers, bounded (λ ∈ [0, 1])

Parameters: α, β ∈ R+

describes probability of parameter λ in Bernoulli

Dirichlet

Domain: K real numbers, bounded (λ1, . . . , λK ∈ [0, 1])

Parameters: α1, . . . , αK ∈ R+

describes probability of parameters λk in Categorical

Giampiero Salvi, with contributions from A. Maki and J. Sullivan Lecture 3: Probabilistic Learning
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General ML problem (supervised learning)

Data:

{(x1, y1), (x2, y2), . . . , (xn, yn)}

Where x are features, and y is the answer

if y is discrete: classification

if y is continuous: regression

Learning: we observe several examples of x and we know y

Inference: we want to know y given a new x

Giampiero Salvi, with contributions from A. Maki and J. Sullivan Lecture 3: Probabilistic Learning
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Machine Learning with Probabilities

Learning: we observe several examples of x and we know y

we can estimate P(y) and P(x|y)

Inference: we want to know y given a new x

we want to estimate P(y |x)

P(x | y)← Likelihood represents the probability of observing data

x given the hypothesis y .

P(y)← Prior of y represents the background knowledge of

hypothesis y being correct.

P(y | x)← Posterior represents the probability that hypothesis y is
true after data x has been observed.

Giampiero Salvi, with contributions from A. Maki and J. Sullivan Lecture 3: Probabilistic Learning
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Bayes’ Rule

P(y | x) = P(x | y)P(y)
P(x)

With

P(x | y)← Likelihood represents the probability of observing data

x given the hypothesis y .

P(y)← Prior of y represents the background knowledge of

hypothesis y being correct.

P(y | x)← Posterior represents the probability that hypothesis y is
true after data x has been observed.

Giampiero Salvi, with contributions from A. Maki and J. Sullivan Lecture 3: Probabilistic Learning
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Learning and Inference

Bayesian Learning: The process of learning the likelihood
distribution P(x | y) and prior probability distribution P(y)
from a set of training points

{(x1, y1), (x2, y2), . . . , (xn, yn)}

Bayesian Inference: The process of calculating the posterior
probability distribution P(y | x) for certain data x.

Giampiero Salvi, with contributions from A. Maki and J. Sullivan Lecture 3: Probabilistic Learning
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Example: Which Gender?

Task: Determine the gender of a person given their measured hair
length.

Notation:

Let g ∈ {’f’, ’m’} be a r.v. denoting the gender of a person.

Let x be the measured length of the hair.

Information given:

The hair length observation was made at a boy’s school thus

P(g = ’m’) = .95, P(g = ’f’) = .05

Knowledge of the likelihood distributions P(x | g = ’f’) and P(x | g = ’m’)
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Example: Which Gender?

• Given: classes h = {A, B}, A = men, B = women,
distributions over hair length for each class

• Task: Determine the gender of a person given the hair
length

• …and it might be interesting to know that the observation
of hair length is made in a boys’ school:
P(A) = PA = 0.95, P(B) = PB = 0.05
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Example: Which Gender?

Task: Determine the gender of a person given their measured hair
length =⇒ calculate P(g | x).

Solution:

Apply Bayes’ Rule to get

P(g = ’m’ | x) = P(x | g = ’m’)P(g = ’m’)

P(x)

=
P(x | g = ’m’)P(g = ’m’)

P(x | g = ’f’)P(g = ’f’) + P(x | g = ’m’)P(g = ’m’)

Can calculate P(g = ’f’ | x) = 1− P(g = ’m’ | x)
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Selecting the most probably hypothesis

Maximum A Posteriori (MAP) Estimate:

Hypothesis with highest probability given observed data

yMAP = argmax
y∈Y

P(y | x)

= argmax
y∈Y

P(x | y)P(y)
P(x)

= argmax
y∈Y

P(x | y)P(y)

Maximum Likelihood Estimate (MLE):

Hypothesis with highest likelihood of generating observed data.

yMLE = argmax
y∈Y

P(x | y)

Useful if we do not know prior distribution or if it is uniform.
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Example: Cancer or Not?

Scenario:
A patient takes a lab test and the result comes back positive. The test returns
a correct positive result in only 98% of the cases in which the disease is actually
present, and a correct negative result in only 97% of the cases in which the
disease is not present. Furthermore, 0.8% of the entire population have cancer.

Scenario in probabilities:

Priors:

P(disease) = .008 P(not disease) = .992

Likelihoods:

P(+ | disease) = .98 P(+ | not disease) = .03

P(− | disease) = .02 P(− | not disease) = .97
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Example: Cancer or Not?

Find MAP estimate:
When test returned a positive result,

yMAP = arg max
y∈{disease, not disease}

P(y |+)

= arg max
y∈{disease, not disease}

P(+ | y)P(y)

Substituting in the correct values get

P(+ | disease)P(disease) = .98× .008 = .0078

P(+ | not disease)P(not disease) = .03× .992 = .0298

Therefore yMAP = ”not disease”.

The Posterior probabilities:

P(disease |+) =
.0078

(.0078 + .0298)
= .21

P(not disease |+) =
.0298

(.0078 + .0298)
= .79
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