Basic Definitions

- A graph is a way of specifying relationships among a collection of items.
 - A graph consists of a set of objects called nodes (vertices)
 - With certain pairs of these objects connected by links called *edges* (*links*)
 - Two nodes are *neighbors* if they are connected by an *edge*

Directed vs. Undirected

 Edges have no orientation
Edges have orientation (e.g, Facebook)

(e.g., Twitter)

Weighted Graphs

- In a weighted graph every edge has an associated weight with it
 - What could weights represent?
 - E.g, distance, cost, frequency etc

Bipartite graph

- Bipartite graph (or bigraph) is a graph whose vertices can be divided into two disjoint sets U and V and such that every edge connects a vertex in U to one in V.
 - Complete Bipartite Graph

Main Concepts

- Paths
- Cycles
- Connectivity
- (Giant) Components
- Distance

Paths

- A path in a graph is a sequence of nodes with the property that each consecutive pair in the sequence is connected by an edge
 - In a simple path nodes do not repeat

Figure 2.3: An alternate drawing of the 13-node Internet graph from December 1970.

Diameter

- Graph diameter can be measured as the
 - Largest shortest path
 - Any issue with that?
 - Average of shortest paths among all the nodes
 - Less sensitive to outliers
- Examples (what are the diameters of these graphs?)

O(Log N)

- WWW: 3,1, FB: 4,74, Co-authorship graphs: 5-10
- Usually diameter is considered "small" if it is O(logN).
 - We'll see later that it will depend on the degree of the network

Cycles

- A cycle is a closed path with at least three edges
 - All nodes are distinct except the first and the last
 - Why cycles are useful?
 - Every edge in 1970 network belongs to a cycle: design choice for making network connected even if one link failed.

Figure 2.3: An alternate drawing of the 13-node Internet graph from December 1970.

Connectivity

- A graph is *connected* if for every pair of nodes there is a path between them.
- A disconnected graph is made of at least two connected sub-graphs (components)

Connectivity (cont.)

- Local bridge
 - AB edge is a local bridge if A and B have no neighbors in common, but there exist another path from A to B.

- Embeddedness of the edge
 - number of mutual friends that the endpoints of the edge have in common.

Padgett's Florentine Families

Betweenness Centrality

- Intuition: how many pairs of nodes have a shortest path through you?
- Betweenness centrality:

$$-C_B(v) = \sum_{s \neq v \neq t \in V} \frac{\sigma_{st}(v)}{\sigma_{st}}$$

- $-\sigma_{st}$ number of shortest paths between s and t
- $-\sigma_{st}(v)$ number of shortest paths between s and t via v.
- Can be normalized:

$$-C'_{B}(v) = \frac{C_{B}(v)}{(n-1)(n-2)/2}$$

Examples

Connectivity (directed graphs)

 A directed graph is strongly connected if for every pair of nodes there is a path between them. A weakly connected graph is connected if we disregard edge directions

Giant Component

- A connected component of a graph is a subset of the nodes such that:
 - (i) every node in the subset has a path to every other;
 - and (ii) the subset is not part of some larger set with the property that every node can reach every other.
- Giant component: a connected component with the largest number of nodes

Giant Components

- Real World networks often contain only a specific number of largest components that are similar in size.
 - Think what could this number be?
 - A: 1
 - B: 2
 - C: 3
 - D: 4 to 10
 - E: 11 to 99
 - F: 100 and more
- Real world networks often contain only one giant component

Intuition on why there can't be 2 giant components

 http://ccl.northwestern.edu/netlogo/models/Gia ntComponent

Clustering coefficient

 Local clustering coefficient C(v) of vertex v is given by the fraction of:

$$c = 1$$

where e(v) denotes the links between the vertices within the neighborhood of v

$$c = 1/3$$

• Network average clustering coefficient \tilde{C} is given by the fraction of:

$$\widetilde{C} = \frac{1}{N} \sum_{i=1}^{N} C(i)$$

$$c = 0$$

How to interpret clustering coef.?

- Clustering coefficient denotes what is the fraction of your neighbors are neighbors themselves
- Compare to a purely random chance that the "triangles" form.
- Edge density of a network: $p = \frac{E}{0.5 * N(N-1)}$
 - E is total number of edges
 - P is the probability that two nodes are connected in a random graph
- If C(G)>>p then we can claim that the graph is clustered

Examples

 Regular graph with degree k connected to nearest neighbors

We start with a ring of *n* vertices

where each vertex is connected to its *k* nearest neighbors

like so.

- What's clustering coefficient when k=4?
 - Possible neighbor friendships: 6
 - Actual friendships: 3
- Clustering coef 3/6=0,5
- Compare it with random graph?

- Assume we have a graph with N=1bn, and avg degree of 100. We measure avg clustering coefficient and find it to be C(G)=0.0001.
- Can we call this graph clustered?