Basic Definitions

• A **graph** is a way of specifying relationships among a collection of items.

 – A **graph** consists of a set of objects called **nodes** (**vertices**)

 – With certain pairs of these objects connected by links called **edges** (**links**)

 – Two nodes are **neighbors** if they are connected by an **edge**
Directed vs. Undirected

- Edges have no orientation (e.g., Facebook)
- Edges have orientation (e.g., Twitter)
Weighted Graphs

• In a *weighted* graph every edge has an associated *weight* with it
 – What could weights represent?
 – E.g, distance, cost, frequency etc
Bipartite graph

• Bipartite graph (or bigraph) is a graph whose vertices can be divided into two disjoint sets U and V and such that every edge connects a vertex in U to one in V.
 – Complete Bipartite Graph
Main Concepts

- Paths
- Cycles
- Connectivity
- (Giant) Components
- Distance
Paths

• A **path** in a graph is a sequence of nodes with the property that each consecutive pair in the sequence is connected by an edge
 – In a **simple path** nodes do not repeat
 • Sometimes can be referred to **Walks** and **Paths**

Figure 2.3: An alternate drawing of the 13-node Internet graph from December 1970.
Diameter

- Graph diameter can be measured as the
 - Largest shortest path
 - Any issue with that?
 - Average of shortest paths among all the nodes
 - Less sensitive to outliers

- Examples (what are the diameters of these graphs?)

- $O(N)$
- $O(\log N)$
- WWW: 3, 1, FB: 4, 74, Co-authorship graphs: 5-10
- Usually diameter is considered “small” if it is $O(\log N)$.
 - We’ll see later that it will depend on the degree of the network
Cycles

• A *cycle* is a closed path with at least three edges
 – All nodes are distinct except the first and the last
 – Why cycles are useful?
 • Every edge in 1970 network belongs to a cycle: design choice for making network connected even if one link failed.

Figure 2.3: An alternate drawing of the 13-node Internet graph from December 1970.
Connectivity

- A graph is **connected** if for every pair of nodes there is a path between them.
- A **disconnected** graph is made of at least two connected sub-graphs (components)
Connectivity (cont.)

• Local bridge
 – AB edge is a local bridge if A and B have no neighbors in common, but there exist another path from A to B.

• Embeddedness of the edge
 – number of mutual friends that the endpoints of the edge have in common.
Padgett's Florentine Families
Betweenness Centrality

• Intuition: *how many pairs of nodes have a shortest path through you?*

• Betweenness centrality:

\[- C_B(v) = \sum_{s \neq v \neq t \in V} \frac{\sigma_{st}(v)}{\sigma_{st}}\]

\[- \sigma_{st} \text{ number of shortest paths between } s \text{ and } t\]
\[- \sigma_{st}(v) \text{ number of shortest paths between } s \text{ and } t \text{ via } v.\]

• Can be normalized:

\[- C'_B(v) = \frac{C_B(v)}{(n-1)(n-2)/2}\]
Examples
Connectivity (directed graphs)

- A directed graph is **strongly connected** if for every pair of nodes there is a path between them. A **weakly connected** graph is connected if we disregard edge directions.
Giant Component

• A *connected component* of a graph is a subset of the nodes such that:
 – (i) every node in the subset has a path to every other;
 – and (ii) the subset is not part of some larger set with the property that every node can reach every other.

• *Giant component*: a connected component with the largest number of nodes
Giant Components

• Real World networks often contain only a specific number of largest components that are similar in size.
 – Think what could this number be?
 • A: 1
 • B: 2
 • C: 3
 • D: 4 to 10
 • E: 11 to 99
 • F: 100 and more

• Real world networks often contain only one giant component

why?
Intuition on why there can’t be 2 giant components
http://ccl.northwestern.edu/netlogo/models/GiantComponent
Clustering coefficient

- **Local clustering coefficient** $C(v)$ of vertex v is given by the fraction of:

$$C(v) = \frac{e(v)}{\text{deg}(v)(\text{deg}(v) - 1)/2}$$

where $e(v)$ denotes the links between the vertices within the neighborhood of v

- **Network average clustering coefficient** \tilde{C} is given by the fraction of:

$$\tilde{C} = \frac{1}{N} \sum_{i=1}^{N} C(i)$$
How to interpret clustering coef.?

• Clustering coefficient denotes what is the fraction of your neighbors are neighbors themselves.
• Compare to a purely random chance that the “triangles” form.
• Edge density of a network: \[p = \frac{E}{0.5 \cdot N(N - 1)} \]
 – E is total number of edges
 – P is the probability that two nodes are connected in a random graph.
• If \(C(G) \gg p \) then we can claim that the graph is clustered.
Examples

- Regular graph with degree \(k \) connected to nearest neighbors

 We start with a ring of \(n \) vertices where each vertex is connected to its \(k \) nearest neighbors like so.

- What’s clustering coefficient when \(k=4 \)?
 - Possible neighbor friendships: 6
 - Actual friendships: 3

- Clustering coeff 3/6=0.5

- Compare it with random graph?
• Assume we have a graph with $N=1\text{bn}$, and avg degree of 100. We measure avg clustering coefficient and find it to be $C(G)=0.0001$.
• Can we call this graph clustered?