Principles of Wireless Sensor Networks

https://www.kth.se/social/course/EL2745/

Lecture 7 Distributed Detection

Carlo Fischione Associate Professor of Sensor Networks e-mail:carlofi@kth.se http://www.ee.kth.se/~carlofi/

KTH Royal Institute of Technology Stockholm, Sweden

September 15, 2015

Course content

- Part 1
 - ► Lec 1: Introduction to WSNs
 - Lec 2: Introduction to Programming WSNs
- Part 2
 - ► Lec 3: Wireless Channel
 - Lec 4: Physical Layer
 - Lec 5: Medium Access Control Layer
 - Lec 6: Routing
- Part 3
 - Lec 7: Distributed Detection
 - Lec 8: Static Distributed Estimation
 - Lec 9: Dynamic Distributed Estimation
 - Lec 10: Positioning and Localization
 - Lec 11: Time Synchronization
- Part 4
 - Lec 12: Wireless Sensor Network Control Systems 1
 - Lec 13: Wireless Sensor Network Control Systems 2

Previous lecture

Application
Presentation
Session
Transport
Routing
MAC
Phy

On which path messages should be routed?

Today's lecture

- Today we study how to detect events out of uncertain (noisy) observations
- Detection is an application on top of the protocol stack
- However, detection theory can be used in other layers as well

Today's learning goals

- What is binary detection?
- How to detect events from one sensor?
- How to detect events from multiple sensors?

Outline

- Introduction to detection theory
- Detection from one sensor
- Detection from multiple sensors

Outline

• Introduction to detection theory

- Detection from one sensor
 - Decision rules, MAP, LRT, ML
 - The Neyman-Pearson criterion
 - Pareto Optimisation
- Detection from multiple sensors
 - The Likelihood Ratio Test
 - The Counting rule

Basic of detection theory

Hypothesis concept

"I've narrowed it to two hypotheses: it grew or we shrunk."

- The concept of binary hypothesis testing is now introduced
 - H_0 hypothesis 0 s_0 signal
 - H_1 hypothesis 1 s_1 signal
- We consider a measurement y(t): noisy signal associated to the event. Consider y(t) as random variable. Let y be a specific outcome of this random variable

Example: Basic of detection theory

Suppose $y(t) \in \mathbb{R}^2$

Goal of detection: Minimize the errors out of noisy measurements that may misplace the points

Binary hypothesis testing

• Suppose
$$y(t) = \begin{cases} s_0 & \text{if } H_0 \text{ happened}, \\ s_1 & \text{if } H_1 \text{ happened}. \end{cases}$$

Example: Assume y(t) is simply given by

$$y\left(t\right) = \begin{cases} n\left(t\right) & \text{if } H_0 \text{ happened,} \\ \\ \mu + n\left(t\right) & \text{if } H_1 \text{ happened.} \end{cases}$$

Outline

• Introduction to detection theory

- Detection from one sensor
 - Decision rules, MAP, LRT, ML
 - ► The Neyman-Pearson criterion
 - Pareto Optimisation
- Detection from multiple sensors
 - The Likelihood Ratio Test
 - The Counting rule

Definition of probabilities

- $\Pr(s_1|H_0)$ Probability of false alarm
- $\Pr(s_0|H_1)$ Probability of miss detection
- $\Pr(s_1|H_1)$ Probability of detection

Definition

A posteriori probability: Given the realization of y(t) : y, what is the probability that H_0 or H_1 happened?

- $\Pr\left(H_0|y\right)$
- $\Pr\left(H_1|y\right)$

Criterion of a posteriori

• Maximum a posteriori probability (MAP)

We decide for $\left\{ \begin{array}{ll} H_0 & \text{if } \Pr\left(H_0|y\right) > \Pr\left(H_1|y\right) \\ \\ H_1 & \text{if } \Pr\left(H_0|y\right) \leq \Pr\left(H_1|y\right) \end{array} \right.$

• In practice, we assume to know the probabilites $\Pr(H_0)$ and $\Pr(H_1)$. According to Bayes' rule

$$\Pr(H_0|y) = \frac{\Pr(y|H_0)\Pr(H_0)}{\Pr(y)} \qquad \Pr(H_1|y) = \frac{\Pr(y|H_1)\Pr(H_1)}{\Pr(y)}$$

• Therefore MAP criterion becomes

We decide for
$$\begin{cases} H_0 & \text{if } \Pr(y|H_0) \cdot \Pr(H_0) > \Pr(y|H_1) \cdot \Pr(H_1) \\ \\ H_1 & \text{if } \Pr(y|H_0) \cdot \Pr(H_0) \le \Pr(y|H_1) \cdot \Pr(H_1) \end{cases}$$

Likelihood ratio test

• The previous test can be equivalently converted into the Likelihood Ratio Test (LRT)

 $\frac{\Pr\left(y|H_{1}\right)}{\Pr\left(y|H_{0}\right)} \underset{H_{0}}{\overset{H_{1}}{\gtrless}} \frac{\Pr\left(H_{0}\right)}{\Pr\left(H_{1}\right)}$

• In the special case where $\frac{\Pr(H_0)}{\Pr(H_1)} = 1 \Rightarrow$ Maximum Likelihood detection (ML)

Example

The intersection point of the two adjacent gaussian curves defines the threshold γ , according to which a decision is made

Example

The conditional probabilities given the hypotheses H_0 and H_1 are respectively

$$\Pr\left(y|H_0\right) = \int_{-\infty}^{\gamma} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz \stackrel{\Delta}{=} \Pr\left(H_0|H_0\right)$$

$$\Pr\left(y|H_1\right) = \int_{\gamma}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{(z-\mu)^2}{2}} dz \stackrel{\Delta}{=} \Pr\left(H_1|H_1\right)$$

Example

• Probability of false alarm

$$P_{F}(\gamma) \stackrel{\Delta}{=} \Pr\left(H_{1}|H_{0}\right) = \int_{\gamma}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^{2}}{2}} dz = Q\left(\gamma\right)$$

• Probability of miss detection

$$P_M(\gamma) \stackrel{\Delta}{=} \Pr\left(H_0|H_1\right) = \int_{-\infty}^{\gamma} \frac{1}{\sqrt{2\pi}} e^{-\frac{(z-\mu)^2}{2}} dz = Q\left(\mu - \gamma\right)$$

How should γ be chosen?

- Based on the previous example, we argue that in general there is tradeoff between $\gamma,~{\rm P}_F$ and ${\rm P}_M$
- ullet There are at least three methods that can be used to choose γ
 - LRT
 - Newman-Pearson method
 - Pareto optimization

LRT

• If the probabilities of H_0 and H_1 (p_0 and p_1) are known beforehand, and if the phenomenon is associated to the two signals 0 and μ with a Gaussian measurement error, we have

$$\Pr(y|H_0) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-(y-0)^2}{2\sigma^2}} \qquad \qquad \Pr(y|H_1) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-(y-\mu_y)^2}{2\sigma^2}}$$

and the LRT is

$$p_1 \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-(y-\mu_y)^2}{2\sigma^2}} > p_0 \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-y^2}{2\sigma^2}}$$

which is equivalent to check if

$$y > \gamma = \frac{\mu_y^2 - 2\sigma^2 \ln\left(\frac{p_1}{p_0}\right)}{2\mu_y}$$

 $\bullet~{\rm LRT}$ reduced to checking if y is larger or smaller than a specific threshold γ

Neyman-Pearson Criterion

- In case that $\Pr{(H_0)},\,\Pr{(H_1)}$ are unknown, we use an optimisation based method for choosing γ
- This method is also called Neyman-Pearson criterion

Fast-Lipschitz optimization

$$\min_{\gamma} P_M(\gamma) = Q(\mu - \gamma)$$

s.t. $P_F(\gamma) \le \bar{P}_F$

 \Downarrow Solution for the Gaussian noise Example

$$\gamma^*: \ Q\left(\gamma^*\right) = \bar{\mathbf{P}}_F$$

 $\bullet\,$ The solution to this optimisation problem gives the γ of the Neyman-Pearson criterion

Pareto optimization

Another way to choose the detection threshold, $\gamma,$ is by using the Pareto optimization method

Pareto optimization

The optimal γ , γ^* , is found by the minimization of the average cost function $C(\gamma)$

Find
$$\gamma^* \to \min_{\gamma} C(\gamma)$$

and

$$C(\gamma) = \sum_{i=0}^{1} \sum_{\substack{j=0\\j\neq i}}^{1} c_{ij} \operatorname{Pr}(H_i|H_j) \operatorname{Pr}(H_j)$$

where $\Pr(H_i|H_j)$ is either the probability of false alarm or miss detection and c_{ij} the cost of being wrong

Outline

• Introduction to detection theory

- Detection from one sensor
 - Decision rules, MAP, LRT, ML
 - The Neyman-Pearson criterion
 - Pareto optimization
- Detection from multiple sensors
 - The Likelihood Ratio Test
 - The Counting rule

Multiple sensors

Distributed detection method

• In each sensor
$$y_i(t) = \begin{cases} n_i(t) & \text{if } H_0 \text{ happened}, \\ \mu_i + n_i(t) & \text{if } H_1 \text{ happened}. \end{cases}$$

and a decision $u_i(t) = \begin{cases} 0 & \text{if } H_0 \text{ happened,} \\ 1 & \text{if } H_1 \text{ happened.} \end{cases}$ is taken

• The fusion center takes an overall decision $\underline{u} = f(u_1, ..., u_N)$ after collecting the decisions from each sensor

Multiple sensors

In case of multiple sensors, the definitions of probabilities are as follows

$$P_{F_{i}} = \Pr\left(u_{i} = 1|H_{0}\right) = \int_{\gamma_{i}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^{2}}{2}} dt = Q\left(\gamma_{i}\right) \stackrel{\Delta}{=} \Pr\left(H_{1}|H_{0}\right)$$

$$P_{M_{i}} = \Pr\left(u_{i} = 0|H_{1}\right) = \int_{-\infty}^{\gamma_{i}} \frac{1}{\sqrt{2\pi}} e^{-\frac{(t-\mu_{i})^{2}}{2}} dt = 1 - Q\left(\gamma_{i} - \mu_{i}\right) \stackrel{\Delta}{=} \Pr\left(H_{0}|H_{1}\right)$$

$$P_{D_{i}} = \Pr\left(u_{i} = 1|H_{1}\right) = \int_{\gamma_{i}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{(t-\mu_{i})^{2}}{2}} dt = Q\left(\gamma_{i} - \mu_{i}\right) \stackrel{\Delta}{=} \Pr_{i}\left(H_{1}|H_{1}\right)$$

where P_{F_i} , P_{M_i} and P_{D_i} the probabilities of false alarm, miss detection and detection of a particular node *i* respectively.

Decision function f

How to design an optimal decision function f?

- Option 1: The Likelihood Ratio Test
- Option 2: The counting decision rule

The Likelihood Ratio Test

By applying the Likelihood Ratio Test (LRT) we get

$$\frac{\Pr\left(\underline{u}|H_{1}\right)}{\Pr\left(\underline{u}|H_{0}\right)} \underset{H_{0}}{\overset{H_{1}}{\gtrless}} \frac{\Pr\left(H_{0}\right)}{\Pr\left(H_{1}\right)} \stackrel{ML}{\Rightarrow} \frac{\Pr\left(\underline{u}|H_{1}\right)}{\Pr\left(\underline{u}|H_{0}\right)} \underset{H_{0}}{\overset{H_{1}}{\Rightarrow}} 1$$

Using the Bayes' rule, ML criterion becomes

$$\frac{\Pr\left(H_1|\underline{u}\right)}{\Pr\left(H_0|\underline{u}\right)} \underset{H_0}{\overset{H_1}{\gtrless}} 1$$

The Likelihood Ratio Test

Theorem

$$\log \frac{\Pr\left(H_1|\underline{u}\right)}{\Pr\left(H_0|\underline{u}\right)} = \log \frac{\Pr\left(H_1\right)}{\Pr\left(H_0\right)} + \sum_{S^+} \log \frac{1 - \Pr_{M_i}}{\Pr_{F_i}} + \sum_{S^-} \log \frac{\Pr_{M_i}}{1 - \Pr_{F_i}}$$

where S^+ the set of sensors that decide for 1 $$S^-$$ the set of sensors that decide for 0

The Likelihood Ratio Test

Proof:

We have

$$\Pr(H_1|\underline{u}) = \frac{\Pr(H_1,\underline{u})}{\Pr(\underline{u})} = \frac{\Pr(H_1)}{\Pr(\underline{u})} \prod_{S_+} \Pr(u_i = +1|H_1) \prod_{S_-} \Pr(u_i = 0|H_1)$$
$$= \frac{\Pr(H_1)}{\Pr(\underline{u})} \prod_{S_+} (1 - P_{M_i}) \prod_{S_-} P_{M_i}.$$

In a similar manner,

$$\Pr(H_0|\underline{u}) = \frac{\Pr(H_0)}{\Pr(\underline{u})} \prod_{S_+} (1 - P_{F_i}) \prod_{S_-} P_{F_i}.$$

Thus, we have that

$$\log \frac{\Pr(H_1|\underline{u})}{\Pr(H_0|\underline{u})} = \log \frac{\Pr(H_1)}{\Pr(H_0)} + \sum_{S_+} \log \frac{1 - P_{M_i}}{P_{F_i}} + \sum_{S_-} \log \frac{P_{M_i}}{1 - P_{F_i}}.$$

The counting rule

Another decision criterion is the counting rule

$$\Lambda = \sum_{i=1}^{N} u_i \underset{H_0}{\not \in}_{H_0}^{1}$$

where Γ is the decision threshold

Assuming that the decision threshold, γ_i , is the same (γ) for all sensors, the probability of false alarm is now

$$\Pr\left(\Lambda \ge \Gamma | N, H_0\right) = \sum_{i=\Gamma}^{N} \binom{N}{i} \operatorname{P}_{F_i}^{i} (1 - P_{F_i})^{N-i}$$

Applying the Laplace - de Moivre approximation and assuming equal probabilities of false alarm among the sensors,

$$\Pr\left(\Lambda \ge \Gamma | N, H_0\right) \simeq Q\left(\frac{\Gamma - N \cdot P_F}{\sqrt{N \cdot P_F \left(1 - P_F\right)}}\right)$$

Summary

We have studied the basic principles regarding the detection from one or multiple sensor(s).

We have also seen certain representative decision rules for detecting events out of uncertain (noisy) observations

Next lecture

Next lecture, we study how to perform static estimation from noisy measurements of the sensors $% \left({{{\mathbf{r}}_{\mathrm{s}}}} \right)$