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Exam 

● Exam – when? 

● January 7? 
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Mathematics 

Vectors and Points 
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Vectors 

● Vectors 

● A vector is an arrow in space 

● We use bold letters for vectors: 𝐮, 𝐯,𝐰, 𝐱, 𝐲, 𝐳… 

● Vector space 𝑉: set of possible vectors 

𝐯 

𝑉 



Vector Operations 
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Elementary Vector Operations 

𝟏

𝟐
 ⋅ 𝐯 

Scaling Vectors 

𝐯 

𝟐 ⋅ 𝐯 

Adding Vectors 

𝐯 

𝐰 

𝐯 + 𝐰 

vector-scalar product 

𝜆 ⋅ 𝐯   (𝜆 ∈ ℝ,  𝐯 ∈ 𝑉) 
vector-addition  

𝐯 + 𝐰   (𝐯,𝐰 ∈ 𝑉) 
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operator ∗ 

Vector-Scalar Multiplication 

in in 

out 

2.3 

operator + 

Vector Addition 

in in 

out 

Signatures 



Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015 

Elementary Vector Operations 

Reversing Vectors 

𝐯 
−𝐯 

Subtracting Vectors 

𝐯 
−𝐰 

𝐯 − 𝐰 

*) special case of 

scaling 

*) special case of 

addition 
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Properties 

Associative Commutative 

𝐰 

𝐯 

𝐰 

𝐯 𝐯 + 𝐰 

𝐰+ 𝐯 
= 

𝐯 +𝐰 = 𝐰+ 𝐯 𝐮 + 𝐯 +𝐰 = 𝐮 + 𝐯 +𝐰 

𝐮 
𝐯 

𝐰 

𝐮 + 𝐯  

𝐯 + 𝐰  
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Commutative: “Non-Curved” Space 

b 

a a 

b 

vector space 

(Euclidean geometry) 

not a vector 

 space 

a 

b 

a 
b 

(Curved “Manifold”) 

*) associativity still holds 
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𝟑𝐯 

𝟑𝐰 

Properties 

Distributive 

𝟐𝐯 

𝟐𝐰 

𝜆 𝐯 + 𝐰 = 𝜆𝐯 + 𝜆𝐰 

𝐯 
𝐰 

𝜆 𝜇𝐯 = 𝜆𝜇 𝐯  



Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015 

More Properties 

𝐯 −𝐰 = − 𝐰− 𝐯  

𝐯 𝐰 

𝐰− 𝐯 

𝐯 𝐰 

𝐯 − 𝐰 
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Vectors 

● Vectors 

● A vector is an arrow in space 

𝑉 

𝐯 
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Points 

● Points 

● Fix an origin 

● Store vector from origin to point 

● „Vectors are differences of points“ 

𝐯 

𝐯𝟐 

𝐯 

𝐯2 
𝐨𝐫𝐢𝐠𝐢𝐧 

𝐯 − 𝐯2 



Algebraic Representation 

(Implementation) 
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Representation 

Coordinates! 

𝐯 =
𝑥−coord.
𝑦−coord.

=
𝑣1
𝑣2

 

Project on coordinate vectors 

𝐲 

𝐱 𝐨𝐫𝐢𝐠𝐢𝐧 

𝐯 

𝑣1 

𝑣2 

𝐯 =
3
2

 

𝑉 = ℝ2 
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Higher Dimensions 

● We can add more entries: 

 

 

 

● Or even more entries: 

𝐯 =
𝑥
𝑦
𝑧

 

𝐲 

𝐱 𝐨𝐫𝐢𝐠𝐢𝐧 

𝐳 

𝑥 𝑧 

𝑦 

𝐯 =

𝑣1
𝑣2
⋮
𝑣𝑑

 𝑉 = ℝd 𝑑 = “dimension” 

𝑉 = ℝ3 
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Vectors 

Geometry: 
vectors are arrows in space 

Algebra: 
arrays of numbers 

𝐱 =
𝑥1
𝑥2
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Vector Addition 

x 

y 

x + y 

Adding Vectors: 
Concatenation 

Algebra: 
adding numbers 

𝐱 + 𝐲 =
𝑥1 + 𝑦1
𝑥2 + 𝑦2
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Multiplication with Scalars 

x 

Scalar-Vector Multiplication: 
Scaling (incl. mirroring) 

1.5·x 

2.0·x 

-1.0·x 

Algebra: 
multiplying with real number 

𝜆𝐱 =
𝜆𝑥1
𝜆𝑥2
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Null Vector 

● Null vector 

𝟎 =
0
0
0

 

● Does not change other vectors in addition 

● 𝐯 + 𝟎 = 𝟎 + 𝐯 = 𝐯 for all vectors 𝐯 
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● Definition: A real vector space of dimension 𝑑 
● The set of all 𝑑-tupels: 

 

              ℝ×⋯×ℝ
d−times

= ℝ𝑑  

 

 

● With two operations 

𝐱 ∈ ℝ𝑑: 𝐱 =

𝑥1
⋮
𝑥𝑑

 

Definition 

𝐱 + 𝐲 ≔

𝑥1 + 𝑦1
⋮

𝑥𝑑 + 𝑦𝑑

 𝜆 ⋅ 𝐱 = 𝜆𝐱 ≔
𝜆𝑥1
⋮
𝜆𝑥𝑑

 

𝐱, 𝐲 ∈ ℝ𝑑 ,    𝜆 ∈ ℝ 
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Linear Combinations 

x1 

Geometrically 

x2 

2x2 + x1 

𝐩 = λ𝑖𝐱𝑖

𝑛

𝑖=1

 

Algebraically 

The concept of linear combinations is the corner stone of 

graphics and visualization. 



Linear Combinations & Matrices 
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Convention 

● Matrix elements 
𝑥𝑟𝑜𝑤,𝑐𝑜𝑙𝑢𝑚𝑛 

● Row first, then column 

● “y”-coordinate of the array first 

(common convention) 

𝑥1,1 ⋯ 𝑥1,𝑛
⋮  ⋮
𝑥𝑚,1 ⋯ 𝑥𝑚,𝑛

 
𝑚 
𝑟𝑜𝑤𝑠 

𝑛 
𝑐𝑜𝑙𝑢𝑚𝑛𝑠 

“row vector” 

“column vector” 
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General Matrix Product (Notation) 

● Algebraic rule: 

● Vector-matrix product: 

𝐲 = 𝐌 ⋅ 𝐱 = 

𝐲 𝐌 𝐱 



Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015 

General Matrix Product (Notation) 

● Algebraic rule: 

● Vector-matrix product: 

° ° 

𝐲 𝐌 

𝐱 
× 
× 
× 
× 

∑ 

∑ 

× × × × 

𝐲 = 𝐌 ⋅ 𝐱 
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General Matrix Product (Notation) 

● Algebraic rule: 

● Vector-matrix product: 

° 

𝐲 𝐌 

𝐱 
× 
× 
× 
× 

∑ 

∑ 

× × × × 
° 
° 𝐲 = 𝐌 ⋅ 𝐱 
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General Matrix Product (Notation) 

● Algebraic rule: 

● Vector-matrix product: 

° 

𝐲 𝐌 

𝐱 
× 
× 
× 
× 

∑ 

∑ 

× × × × 
° 
° 
° 𝐲 = 𝐌 ⋅ 𝐱 
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General Matrix Product (Notation) 

● Algebraic rule: 

● Vector-matrix product: 

° 

𝐲 𝐌 

𝐱 
× 
× 
× 
× 

∑ 

× × × × 

∑ 

° 
° 
° 
° 

𝐲 = 𝐌 ⋅ 𝐱 



Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015 

Matrix Representation 

●Matrix-Vector Multiplication 
 

𝑥1,1 ⋯ 𝑥1,𝑛
⋮  ⋮
𝑥𝑚,1 ⋯ 𝑥𝑚,𝑛

⋅
𝜆1
⋮
λ𝑛

≔ 𝜆𝑖

𝑥1,𝑖
⋮
𝑥𝑚,𝑖

𝑛

𝑖=1

= λ𝑖𝐱𝑖

𝑛

𝑖=1

 

  

 =

𝜆1 ⋅ 𝑥1,1 +⋯+ 𝜆𝑛 ⋅ 𝑥1,𝑛
⋮

𝜆1 ⋅ 𝑥𝑚,1 +⋯+ 𝜆𝑛 ⋅ 𝑥𝑚,𝑛

 

  

° 

column vectors 

of the matrix 

Linear Combination 



Standard Transformations 
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Translation 

● Translate a point 𝐩 along a vector 𝐭 

● General case: 

𝐩′ = 𝐩 + 𝐭 

● 2D: 
𝑥′
𝑦′
=
𝑥
𝑦 +
𝑡𝑥
𝑡𝑦
=
𝑥 + 𝑡𝑥
𝑦 + 𝑡𝑦

 

● 3D: 

𝑥′
𝑦′

𝑧′

=
𝑥
𝑦
𝑧
+

𝑡𝑥
𝑡𝑦
𝑡𝑧

=

𝑥 + 𝑡𝑥
𝑦 + 𝑡𝑦
𝑧 + 𝑡𝑧

 

 

 

𝐲 

𝐱 
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Scaling 

● Scale a point 𝐩 in each dimension 

by the factors 𝑠𝑥 , 𝑠𝑦 , 𝑠𝑧 

● General case: 

𝐩′ = 𝐒 ⋅ 𝐩 

● 2D: 

𝑥′
𝑦′
=
𝑠𝑥 0
0 𝑠𝑦

𝑥
𝑦  

● 3D: 

𝑥′
𝑦′

𝑧′

=

𝑠𝑥 0 0
0 𝑠𝑦 0

0 0 𝑠𝑧

𝑥
𝑦
𝑧

 

 

 

𝐒:ℝ𝑛 → ℝ𝑛, 𝐒 =

𝑠1 0 ⋯ 0

0 𝑠2 0

⋮ ⋱ ⋮
0 0 ⋯ 𝑠𝑛

 

𝐲 

𝐱 
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Uniform Scaling 

𝐲 

𝐱 

Making something 

uniformly smaller: 

𝑠𝑥 = 𝑠𝑦 = 𝑠𝑧 < 1 

 

Making something 

uniformly bigger: 

𝑠𝑥 = 𝑠𝑦 = 𝑠𝑧 > 1 

 

Note: 

Center is at the origin 
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Non-Uniform Scaling 

𝑠𝑥 ≠ 𝑠𝑦 ≠ 𝑠𝑧 
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Rotation in 2D 

● Rotate a point 𝐩 around the origin with an angle 𝜶 in 

counter-clockwise direction 

● 2D: 
𝑥′
𝑦′
=
cos 𝛼 − sin 𝛼
sin 𝛼 cos 𝛼

𝑥
𝑦  
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Rotation in 2D: Background 













cossin'

cossinsincos'

)sin('

sincos'

sinsincoscos'

)cos('













yxy

rry

ry

yxx

rrx

rx

x 

y 

r 

r 

y 

p 

 

 

x 

p' x‘ 

y‘ 

Remark: The 𝛼 from this slide is not the 𝛼 from the previous slide! 
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Rotation in 3D 

● Rotate a point 𝐩 around a rotation axis with an angle 𝜶 in 

counter-clockwise direction 

 

 

 

 

right hand 
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Rotation in 3D 

● Rotation matrices for the rotation around the coordinate 

axes: 

 

 

 

 

𝐑𝑥 =
1 0 0
0 cos 𝛼 − sin 𝛼
0 sin 𝛼 cos 𝛼

 

𝐑𝑧 =
cos 𝛼 − sin 𝛼 0
sin 𝛼 cos 𝛼 0
0 0 1

 

𝐑𝑦 =
cos 𝛼 0 sin 𝛼
0 1 0
− sin 𝛼 0 cos 𝛼
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Shear 

● A shear is given as 

● 2D: 

𝑥′
𝑦′
=
1 𝑠𝑦
𝑠𝑥 1

𝑥
𝑦  

 

 

 

𝑥′
𝑦′
=
1 𝑠𝑦
0 1

𝑥
𝑦  

𝑥′
𝑦′
=
1 0
𝑠𝑥 1

𝑥
𝑦  

shear in x-direction 

shear in y-direction 
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Shear 

● A shear is given as 

● 3D: 

𝑥′
𝑦′

𝑧′

=

1 𝑠𝑦𝑥 𝑠𝑧𝑥
𝑠𝑥𝑦 1 𝑠𝑧𝑦
𝑠𝑥𝑧 𝑠𝑦𝑧 1

𝑥
𝑦
𝑧
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Shear 

● Shears can be used to describe rotations 

● Example: Rotation of 2D objects using three subsequent 

shear transformations 

 

 

 

 

  

 

tan 2,x x y

y y



 

   sin

x x

y x y

   

 

tan 2x x y

y y

horizontal shear 

horizontal shear 

vertical shear 
















 















 










y

x

y

x

10

2tan1

1sin

01

10

2tan1

'

' 




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Identity Transform 

● The Identity matrix keeps points in their original location. 










0

1










1

0 𝐌𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 = 𝐈 =
1 0
0 1

 










0

1










1

0

General case 

𝐈: ℝ𝑛 → ℝ𝑛, 𝐈 =

1 0 ⋯ 0
0 1 0
⋮ ⋱ ⋮
0 0 ⋯ 1

 



Homogeneous Coordinates 

(short version) 
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Problem 

● Translations are not linear 

● 𝐱 → 𝐌𝐱 cannot encode translations 

● Proof: Origin cannot be moved: 
 

𝐌 ⋅ 𝟎 =

𝑚11 𝑚12 𝑚13
𝑚21 𝑚22 𝑚23
𝑚31 𝑚32 𝑚33

0
0
0
=
0
0
0
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Homogeneous Coordinates 

● Solution: Just add a constant one 

● Increase dimension ℝ𝑑 → ℝ𝑑+1 

● Last entry = 1 in vectors 

● “Cheap Trick”, “Evil Hack” 
 

𝐌′ ⋅ 𝐱 =

𝑚11 𝑚12 𝑚13 𝑡1
𝑚21 𝑚22 𝑚23 𝑡2
𝑚31 𝑚32 𝑚33 𝑡3
0 0 0 1

𝑥
𝑦
𝑧
1

 

  

 =

⋱ ⋰ |

𝐌 𝐭
⋰ ⋱ |
0 0 0 1

|
𝐱
|
1

=

|
𝐌𝐱 + 𝐭
|
1
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Homogeneous Coordinates 

● General case 
 

𝐌 ⋅ 𝐱 =

𝑚11 𝑚12 𝑚13 𝑚14
𝑚21 𝑚22 𝑚23 𝑚24
𝑚31 𝑚32 𝑚33 𝑚34
𝑚41 𝑚42 𝑚43 𝑚44

𝑥
𝑦
𝑧
1

=

𝑥′
𝑦′

𝑧′
𝑤′

 

● 𝑤′ might be different from 1 

● Convention: Divide by 𝑤-coord. before using  
 

Result: 

𝑥′/𝑤′

𝑦′/𝑤′

𝑧′/𝑤′
1
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Homogeneous Coordinates 

● General case 
 

𝐌 ⋅ 𝐱 =

𝑚11 𝑚12 𝑚13 𝑚14
𝑚21 𝑚22 𝑚23 𝑚24
𝑚31 𝑚32 𝑚33 𝑚34
𝑚41 𝑚42 𝑚43 𝑚44

𝑥1
𝑥2
𝑥3
1

=

𝑦1
𝑦2
𝑦3
𝑦4

≡

𝑦1/𝑦4
𝑦2/𝑦4
𝑦3/𝑦4
1

 

 

● Rules: 

● Before using as 3D point, divide by last (4th) entry 

● No normalization required during 

subsequent transformations (matrix-multiplications, see later) 
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The Full Story? 

● Projective Geometry 

● Not just an evil hack 

● Deep & interesting theoretical background 

● More on this later 

● For simplicity 

● We’ll treat it as a computational trick for now 

● Focus on the graphics application 

● Remember for now: 

● We can build “4D Translation matrices” for 3D+1 points 

● We can “divide” by a common linear factor 



Overview Standard Transformations 

with Homogeneous Coordinates 
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2D 

3D 

Translation Scaling Shearing 



















100

10

01

),( y

x

yx t

t

ttT























1000

100

010

001

),,(
z

y

x

zyx
t

t

t

tttT























1000

000

000

000

),,(
z

y

x

zyx
s

s

s

sssS



















100

00

00

),( y

x

yx s

s

ssS


















100

010

01 y

x

h

H























1000

01

01

01

65

43

21

ss

ss

ss

H

Overview 



Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015 

Rotation around 

x-axis 

Rotation around 

y-axis 

Rotation around 

z-axis 

2D-Rotation 3D-Rotation 













 


100
0cossin
0sincos

)( 


R















 



1000
0100
00cossin
00sincos

)( 


zR




















1000
0cossin0
0sincos0
0001

)( 
xR



















1000
0cos0sin
0010
0sin0cos

)( 



yR

Overview 



Further Transformations 
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Reflection 

General case 

𝐒𝜆: ℝ
𝑛 → ℝ𝑛, 𝐒𝜆 =

1 0 ⋯ 0
0 −1 0
⋮ ⋱ ⋮
0 0 ⋯ 1

 

1
0

 

0
1

 

−1
0

 

0
1

 

𝐌𝑟𝑒𝑓𝑙 =
−1 0
0 1

 

Reflection 

Axis 
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before after 





















100

010

001

















100

001

010

before after 

Further Transformations 

55 

reflection over the origin 

reflection at the line y=x 



Combining Transformations 
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General Case 

● You can combine all of these 

● Example: General axis of rotation 

● First rotate rotation axis to x-axis 

● Rotate around x 

● Rotate back 

● Question 

● How to combine multiple transformation matrices? 
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Matrix Multiplication 

● Execute multiple transformations, one after another 

● Written as product: matrix multiplication 

● 𝐁 ⋅ 𝐀 ⋅ 𝐱: 

● Apply 𝐀 to 𝐱 first  

● Then 𝐁 

● 𝐁 ⋅ 𝐀  is again a matrix 
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How does it work? 

● Consider 𝐁 ⋅ 𝐀 : 

● Rotate first (𝐀) 

● Then scale (𝐁) 










0

1










1

0

cos 𝛼
sin 𝛼

 

 

−sin 𝛼
cos 𝛼

 

 

1
0

 

0
1

 

0
2

 

2
0

 

𝐀 𝐁 
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How does it work? 

● How to compute 𝐁 ⋅ 𝐀 ? 
● Transform basis vectors 

● Transform again 

cos 𝛼
sin 𝛼

 

−sin 𝛼
cos𝛼

 

𝐀 𝐁 ⋅ 𝐀 

2cos𝛼
2sin 𝛼

 

 

−2sin 𝛼
2cos𝛼
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● Matrix product: 

𝐀 

Matrix Multiplication 

𝐁 

𝐚1 𝐚4 

column 4 

𝐚3 

column 3 

𝐚2 

column 2 

column 1 
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𝐀 

Matrix Multiplication 

● Matrix product: 

𝐁 
° 
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Matrix Multiplication 

● General matrix products: 

●  𝐁 ⋅ 𝐀: possible if 

 #Row(𝐀) = #Columns(𝐁) 

° 

𝐀 

𝐁 

𝐀 =

𝑎1,1 ⋯ 𝑎1,𝑛
⋮  ⋮
𝑎𝑚,1 ⋯ 𝑎𝑚,𝑛

 

𝐁 =

𝑏1,1 ⋯ 𝑏1,𝑚
⋮  ⋮
𝑏𝑘,1 ⋯ 𝑏𝑘,𝑚

 

𝑘 

𝑚 𝑛 

𝑛 

𝑚 

𝑘 

𝐑 =

𝑟1,1 ⋯ 𝑟1,𝑛
⋮  ⋮
𝑟𝑘,1 ⋯ 𝑟𝑘,𝑛

 

𝐑 = 𝐁 ⋅ 𝐀 

𝑟𝑖,𝑗 =  𝑎𝑞,𝑗 ⋅ 𝑏𝑖,𝑞

𝑚

𝑞=1
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Rules for Matrix Multiplication 

● Matrix-Multiplication 

● Associative 

𝐀 ⋅ 𝐁 ⋅ 𝐂 = 𝐀 ⋅ 𝐁 ⋅ 𝐂  

● Includes vector-multiplication 
 

𝐀 ⋅ 𝐁 ⋅ 𝐯 = 𝐀 ⋅ 𝐁 ⋅ 𝐯  

● In general, not commutative:  

It might be that 𝐀 ⋅ 𝐁 ≠ 𝐁 ⋅ 𝐀 

● Linear 

𝐀 ⋅ 𝐯 + 𝐰 = 𝐀 ⋅ 𝐯 + 𝐀 ⋅ 𝐰 

𝐀 ⋅ 𝜆 ⋅ 𝐯 = 𝜆 ⋅ 𝐀 ⋅ 𝐯  

 

𝜆 ∈ ℝ 

𝐀,𝐁, 𝐂 - matrices 

𝐯,𝐰 - vectors 

Settings 



More Vector Operations: 

Scalar Products 
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Additional Vector Operations 

Length of Vectors 

𝐯2 = 𝟒. 𝟐cm 

“length” or “norm” 

‖𝐯‖ yields real number ≥ 0 

𝐯1 = 𝟐. 𝟑cm 

𝐯1 

𝐯2 
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Additional Vector Operations 

Angle between Vectors 

𝛼 = ∠ 𝐯1, 𝐯2 = 𝟑𝟑° 

angle ∠ 𝐯1, 𝐯2  
 yields real number  

0,… , 2𝜋 = [0,… , 360°) 

𝐯1 

𝐯2 

𝛼 
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Additional Vector Operations 

Angle between Vectors 

right angles 

𝐯1 
𝐯2 

90° 
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Additional Vector Operations 

Projection 

Projection: determine  

length of 𝐯 along direction of 𝐰 

𝐯 

𝐰 90° 

𝐯 prj on 𝐰 
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Additional Vector Operations 

Scalar Product*) 

𝐯 ⋅ 𝐰 = 𝐯 ⋅ 𝐰 ⋅ cos∠(𝐯,𝐰) 

*) also known as inner 

product 

or dot-product  

90° 

𝐯 

𝐰 

𝐯 ⋅ 𝐰 =
𝑣1
𝑣2
⋅
𝑤1
𝑤2
≔ 𝑣1 ⋅ 𝑤1 + 𝑣2 ⋅ 𝑤2 
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Additional Vector Operations 

Scalar Product*) 

𝐯 ⋅ 𝐰 = 𝐯 ⋅ 𝐰 ⋅ cos∠(𝐯,𝐰) 

also: 𝐯,𝐰  

90° 

𝐯 

𝐰 
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Additional Vector Operations 

𝐯 ⋅ 𝐰 = 𝐯 ⋅ 𝐰 ⋅ cos∠(𝐯,𝐰) 
 

Comprises: length, projection, angles 

Length:  𝐯 = 𝐯 ⋅ 𝐯 
 

Angle:  ∠  𝐯,𝐰 = arccos 𝐯 ⋅ 𝐰  
 

Projection:  „𝐯 prj on 𝐰” =
𝐯⋅𝐰

𝐰
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Algebraic Properties 

● Properties 

● Symmetry (commutativity) 

𝐮, 𝐯 = 𝐯, 𝐮  

● Bilinearity 

𝜆𝐯, 𝐰 = 𝜆 𝐯,𝐰 = 𝐯, 𝜆𝐰  

𝐮 + 𝐯,𝐰 = 𝐮,𝐰 + 𝐯,𝐰  

(symmetry: same for second argument) 

● Positive definite 

𝐮, 𝐮 ≥ 0,    𝐮, 𝐮 = 𝟎 ⇒ 𝐮 = 𝟎  

 

𝜆 ∈ ℝ 

𝐮, 𝐯,𝐰 ∈ ℝ𝑑 

Settings 
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Attention! 

● Do not mix 

● Scalar-vector product 

● Inner (scalar) product 

● In general 

𝐱, 𝐲 ⋅ 𝐳 ≠ 𝐱 ⋅ 𝐲, 𝐳  

● Beware of notation: 

● 𝐱 ⋅ 𝐲 ⋅ 𝐳 ≠ 𝐱 ⋅ 𝐲 ⋅ 𝐳  

●(no violation of associativity: different operations) 
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Cross Product 

● Cross-Product: Exists Only For 3D Vectors! 

● 𝐱, 𝐲 ∈ ℝ3 

● 𝐱 × 𝐲 =

𝑥1
𝑥2
𝑥3
×

𝑦1
𝑦2
𝑦3
≔

𝑥2𝑦3 − 𝑥3𝑦2
𝑥3𝑦1 − 𝑥1𝑦3
𝑥1𝑦2 − 𝑥2𝑦1

 

● Geometrically: Theorem 

● 𝐱 × 𝐲 orthogonal to 𝐱, 𝐲 

● Right-handed system 𝐱, 𝐲, 𝐱 × 𝐲  

● 𝐱 × 𝐲 = 𝐱 ⋅ 𝐲 ⋅ sin∠ 𝐱, 𝐲  

y 

x 

x  y 

‖x  y‖ 
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Cross-Product Properties 

● Bilinearity 

● Distributive: 𝐮 × 𝐯 + 𝐰 = 𝐮 × 𝐯 + 𝐮 ×𝐰 

● Scalar-Mult.: 𝜆𝐮 × 𝐯 = 𝐮 × 𝜆𝐯 = 𝜆 𝐮 × 𝐯  

● But beware of 

● Anti-Commutative: 𝐮 × 𝐯 = −𝐯 × 𝐮 

● Not associative;   

we can have  𝐮 × 𝐯 × 𝐰 ≠ 𝐮 × 𝐯 × 𝐰  

 

 


