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Course content

Part 1

I Lec 1: Introduction to WSNs
I Lec 2: Introduction to Programming WSNs

Part 2

I Lec 3: Wireless Channel
I Lec 4: Physical Layer
I Lec 5: Medium Access Control Layer
I Lec 6: Routing

Part 3

I Lec 7: Distributed Detection
I Lec 8: Static Distributed Estimation
I Lec 9: Dynamic Distributed Estimation
I Lec 10: Positioning and Localization
I Lec 11: Time Synchronization

Part 4

I Lec 12: Wireless Sensor Network Control Systems 1
I Lec 13: Wireless Sensor Network Control Systems 2
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Today’s lecture

Today we study how to perform static estimation from noisy measurements of the
sensors

“Static” means that the estimation is of a variable (constant or random) that does
not evolve over time
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Motivation for Static Estimation

Plays a central role in many WSNs applications

Accurately predicts the parameters of a phenomenon

Communication: position, navigation

Monitoring: pollution, earthquake magnitude

Surveillance: crowd density, intruders, attitude
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Today’s learning goals

What are the fundamental aspects of distributed estimation?

Estimation over a Star and a General topology?

What is the LMMSE estimator?

How to make a static sensor fusion?
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Outline

Star and general topologies

Estimation from one sensor

Distributed estimation in a star topology

Distributed estimation in a general topology
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Outline

Star and general topology

Estimation from one sensor

I Model of the measurements for one sensor
I Model of the estimator
I Mean Squared Error (MSE)
I LMMSE estimate

Distributed estimation from many sensors

I Star topology
I General topology
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Topology 1: Star topology
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Figure: Network with a star topology: Solid lines indicating that there is message
communication between nodes. The fusion center receives information from all other
nodes.

The phenomenon is observed by a number of sensors organized as a star

Multiple sensors make measurements

Measurements are transmitted to a fusion center
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Topology 2: General topology
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Figure: Network with an Arbitrary Topology: Solid lines indicating that there is
communication between nodes. There is no node acting as fusion center.

The phenomenon is observed by a number of sensors organized arbitrarily

Multiple sensors make measurements

Measurements are not transmitted to a fusion center
I Indeed, no fusion center. Every node is a sort of local fusion center
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Outline

Star and General topology

Estimation from one sensor

I Model of the measurements for one sensor
I Model of the estimator
I Mean Squared Error (MSE)
I LMMSE estimate

Distributed estimation from many sensors

I Star topology
I General topology
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Model of the measurements for one sensor

Let’s consider only one sensor

Linear measurements (i.e., measurements and the parameters are related linearly)
with noise or measurement errors

y = Hx + v (1)

y: sensor measurement(s)

H: a known matrix

x: what we want to estimate

v: unknown noise or measurement error

Goal: How to estimate x out of the measurement y?
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Model of the estimator

Linear estimator, i.e., the estimator and the measurements are assumed to be linearly
related

x̂(L) = Ly

y: sensor measurement(s)

x̂(L): estimator of x, dependent on L

We need to compute a good estimate x̂(·) ⇒ what matrix L to be used?

Performance criterion for computing L?
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Mean Squared Error (MSE)

A good estimate x̂(·) is found by considering the MSE, which is given by the trace of
error covariance matrix C of the estimator error

In particular, for fixed L, MSE is defined as

MSE(L) = Tr {C(L)}

= Tr
{

E
{

(x̂(L)− x) (x̂(L)− x)T
}}

=
∑N

i=1 E(x̂i(L)− xi)
2

Let L? = arg minL MSE(L)

Then, x̂ = L?y is called the linear minimum MSE (LMMSE) estimate of x
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LMMSE estimate

Proposition 1
Consider a random variable x being observed by a sensor that generates measurements
of the form y = Hx + v. Then LMMSE estimator of x given y is

x̂ = PHTR−1
v︸ ︷︷ ︸

L?

y ,

where

P =
(
R−1

x + HTR−1
v H

)−1

,

Rx is the covariance matrix of x, and Rv is the noise covariance matrix.

We need to show that L? = PHTR−1
v
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LMMSE estimate proof

Advanced topic, not requested for the exam

Proof:

Preliminaries:

(1) A + B � B when A � 0

(2) A � B⇒ Tr(A) ≥ Tr(B)

(3) (A + BC)−1 = A−1 −A−1B
(
I + CA−1B

)−1
CA−1
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LMMSE estimate proof

Proof:

C(L) = E
{

(x̂(L)− x) (x̂(L)− x)T
}

= E
{

(Ly − x) (Ly − x)T
}

= E
{

(LH− I)xxT (LH− I)T + LvvTLT − LHxvTLT − LvxTHTLT
}

= (LH− I)Rx (LH− I)T + LRvL
T − LHE{xvT}︸ ︷︷ ︸

0

LT − LE{vxT}︸ ︷︷ ︸
0

HTLT

= L
(
HRxH

T + Rv

)
︸ ︷︷ ︸

S

LT − LHRx −RxH
TLT + Rx

= LSLT − L(SS−1)HRx −RxH
T(SS−1)LT + Rx

+ RxH
TS−1HTRx −RxH

TS−1HTRx =

=
(
L−RxH

TS−1
)
S
(
L−RxH

TS−1
)T

+ Rx −RxH
TS−1HTRx

� Rx −RxH
TS−1HTRx
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LMMSE estimate proof

The lower bound is achieved when

L = RxH
TS−1 = RxH

T
(
HRxH

T+Rv

)−1

= RxH
T
(
R−1

v −R−1
v H

(
I + RxH

TR−1
v H

)−1

RxH
TR−1

v

)
=

(
I−RxH

TR−1
v H

(
I + RxH

TR−1
v H

)−1
)
RxH

TR−1
v

=
(
I + RxH

TR−1
v H

)−1

RxH
TR−1

v =
(
R−1

x + HTR−1
v H

)−1

HTR−1
v = PHTR−1

v �
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LMMSE estimate

Recap:

Consider the linear system of measurements given in (1), i.e., y = Hx + v. Let x̂ denote
the LMMSE estimator of x given y. Then we have

P−1x̂ = HTR−1
v y , (2)

where

P =
(
R−1

x + HTR−1
v H

)−1

= error covariance of x̂.

Relation (2) has been derived for the case of one sensor

In the case of multiple sensors, relation (2) suggests the possibility of combining
local estimates directly

Several measurements from one sensor can be seen in case of multiple sensors

No need to send all the measurements to a central data processing

This is called static sensor fusion
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Some considerations on x

So far, x is considered a ”zero-mean” random variable with known variance Rx.

When no prior information is available, then R−1
x = 0 and P =

(
HTR−1

v H
)−1

,

thus giving

x̂ =
(
HTR−1

v H
)−1

HTR−1
v y

which is also denoted as the weighted least square estimate.

If the information included has a non zero mean, the estimate need to be corrected
in the following way

P−1(x̂− x̄) = HTR−1
v (y −Hx̄)

We assume x̄ = 0 for readability reasons.
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Outline

Star and General topology

Estimation from one sensor

I Model of the measurements for one sensor
I Model of the estimator
I Mean Squared Error (MSE)
I LMMSE estimate

Distributed estimation from many sensors

I Star topology
I General topology
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Static sensor fusion, star topology

Fusion CenterX

yk = Hkxk + vk

Sensor 1

Sensor 2

...

Sensor K

x̂
Estimated
Parameters

Figure: Illustration of how the process in static sensor fusion is preformed.

Now we move to a case of many sensors in a star topology
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Static sensor fusion, star topology

Proposition 2
Consider a random variable x being observed by K sensors that generate measurements
of the form

yk = Hkx + vk, k = 1, . . . ,K

where the vk and vj (j 6= k) are uncorrelated.

Let x̂ denote the LMMSE estimator of x given y = (y1, . . . ,yK), as obtained at the
fusion center. Then

P−1x̂ =
∑K

k=1 P
−1
k x̂k ,

where P is the estimate error covariance corresponding to x̂ and Pk is the error
covariance corresponding to x̂k. Furthermore,

P−1 = −(K − 1)R−1
x +

∑K
k=1 P

−1
k ,

Rx is the covariance matrix of x = (x1, . . . ,xK)
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Proof of proposition 2

Proof: Note that overall linear system is given byy1

...
yK


︸ ︷︷ ︸

y

=

H1

...
HK


︸ ︷︷ ︸

H

x +

v1

...
vK


︸ ︷︷ ︸

v

Now use Proposition 1

P−1x̂ = HTR−1
v y =

[
HT

1 · · ·HT
K

]
R−1

v1
0 · · · 0

0 R−1
v2

· · · 0
...

...
. . .

...
0 0 · · · R−1

vK


y1

...
yK


=
∑K

k=1 H
T
kR
−1
vk

yk

=
∑K

k=1 P
−1
k x̂k
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Proof of proposition 2

Moreover, from Proposition 1

P−1 = R−1
x + HTR−1

v H︸ ︷︷ ︸
= R−1

x +
∑K

k=1 H
T
kR
−1
vk

Hk︸ ︷︷ ︸
= R−1

x +
∑K

k=1

(
P−1

k −R−1
x

)
= −(K − 1)R−1

x +
∑K

k=1 P
−1
k ,
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Static sensor fusion from multiple sensors

By Proposition 2, complexity of the fusion center goes down considerably

Some computational load is delegated to the distributed sensors

Each estimate is weighted by the inverse of the error covariance matrix

The higher the confidence we have in a particular sensor, the higher the trust we
place in its measurement

Two step procedure

I All the nodes transmit local estimates to a central node (called fusion center)
I Central node calculates and transmits the weighted sum of the local estimates

back

Final outcome is a weighted average
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Outline

Star and General topology

Estimation from one sensor

I Model of the measurements for one sensor
I Model of the estimator
I Mean Squared Error (MSE)
I LMMSE estimate

Distributed estimation from many sensors

I Star topology
I General topology
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Network with arbitrary topology

0
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Figure: Network with a Arbitrary Topology: Solid lines indicating that there is message
communication between nodes. There is no node acting as fusion center.
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Network with arbitrary topology

Generalize the static sensor fusion approach to an arbitrary graph

This approaches are along the lines of average consensus algorithms

No fusion center
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Static sensor fusion with limited communication range

Example scenario:

K nodes measure a scalar value x, measurements are noisy

Nodes are connected according to an arbitrary graph

Each node wants to calculate the average of all the scalars

yk = x + vk , k = 1, . . . ,K

Remember: Provided the noise components are iid Gaussian, then the maximum
likelihood (ML) estimate x̂ of x is given by the average of all yk values, i.e.,

x̂ = (1/K)
∑K

k=1 yk = (1/K)1Ty

Question: How to obtain x̂ just by coordinating with adjacent neighbors (no central
fusion center)?
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fusion center)?
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Static sensor fusion with limited communication range

One way:

Iterative method, iterations n = 0, 1, 2, . . .

Each sensor k, during iteration 0, set x0,k = yk

Each sensor k implements the dynamical system

xn+1,k = xn,k + h
∑

j∈Nk
(xn,j − xn,k) ,

where Nk is the adjacent sensors of sensor k

Just local communications

Compact form
xn+1 = (I− hL)xn , n = 0, 1, 2, . . . ,

where L is the Graph Laplacian matrix
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Static sensor fusion with limited communication range

If the underlying graph is connected (i.e., there is at least one path among all pairs of
nodes), then the Graph Laplacian matrix L has the following properties:

L is symmetric positive-definite matrix.

Each row sum of L is 0.

Each column sum of L is 0.

Then, given small h, it can be proved that the iteration always converges to the
equilibrium (xn+1)k = x̂ for all k = 1, . . . ,K.

The idea extends in a straightforward manner to more general models such as

xn+1,k = xn,k + hW−1
k

∑
j∈Nk

(xn,j − xn,k)
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Summary

Star and General topology

Estimation from one sensor

I Model of the measurements for one sensor
I Model of the estimator
I Mean Squared Error (MSE)
I LMMSE estimate

Distributed estimation from many sensors

I Star topology
I General topology
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Next lecture

Dynamic distributed estimation
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