Lecture 4: Probabilistic Learning DD2431

Giampiero Salvi

Autumn, 2015

Fitting Probability Models

- Maximum Likelihood Methods
- Maximum A Posteriori Methods
- Bayesian methods

2 Unsupervised Learning

- Classification vs Clustering
- Heuristic Example: K-means
- Expectation Maximization

Maximum Likelihood Methods Maximum A Posteriori Methods Bayesian methods

Classification with Probability Distributions

Classification

$$\mathbf{x} \leftarrow \text{features}$$
$$y \in \{y_1, \dots, y_K\} \leftarrow \text{class}$$

$$\hat{k} = rg\max_{k} P(y_k | \mathbf{x})$$

= $rg\max_{k} P(y_k) P(\mathbf{x} | y_k)$

Maximum Likelihood Methods Maximum A Posteriori Methods Bayesian methods

Estimation Theory

in the last lecture we assumed we knew:

- $P(y) \leftarrow Prior$
- $P(x | y) \leftarrow Likelihood$
- $P(x) \leftarrow Evidence$

and we used them to compute the *Posterior* P(y | x)

How can we obtain this information from observations (data)?

Estimation Theory \equiv Learning

Maximum Likelihood Methods Maximum A Posteriori Methods Bayesian methods

Parametric vs Non-Parametric Estimation

Bayesian non-parametric methods integrate out the parameters.

Maximum Likelihood Methods Maximum A Posteriori Methods Bayesian methods

Assumption # 1: Class Independence

Assumptions:

- samples from class i do not influence estimate for class $j, i \neq j$
- Generative vs discriminative models

Maximum Likelihood Methods Maximum A Posteriori Methods Bayesian methods

Parameter estimation (cont.)

• class independence assumption:

- each distribution is a likelihood in the form $P(\mathbf{x}|\theta_i)$ for class *i*
- in the following we drop the class index and talk about $P(\mathbf{x}|\theta)$

Maximum Likelihood Methods Maximum A Posteriori Methods Bayesian methods

Assumption #2: i.i.d.

Samples from each class are independent and identically distributed:

$$\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$$

The likelihood of the whole data set can be factorized:

$$P(\mathcal{D}|\theta) = P(\mathbf{x}_1, \dots, \mathbf{x}_N|\theta) = \prod_{i=1}^N P(\mathbf{x}_i|\theta)$$

And the log-likelihood becomes:

$$\log P(\mathcal{D}| heta) = \sum_{i=1}^{N} \log P(\mathbf{x}_i| heta)$$

Maximum Likelihood Methods Maximum A Posteriori Methods Bayesian methods

Three Approaches

- Maximum Likelihood (ML)
- Maximum A Posteriori (MAP)
- Bayesian

Maximum Likelihood Methods Maximum A Posteriori Methods Bayesian methods

Maximum likelihood estimation: Illustration

Find parameter vector $\hat{\theta}$ that maximizes $P(\mathcal{D}|\theta)$ with $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$

Maximum Likelihood Methods Maximum A Posteriori Methods Bayesian methods

Maximum likelihood estimation: Illustration

Find parameter vector $\hat{\theta}$ that maximizes $P(\mathcal{D}|\theta)$ with $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$

estimate the optimal parameters of the model

Maximum Likelihood Methods Maximum A Posteriori Methods Bayesian methods

Maximum likelihood estimation: Illustration

Find parameter vector $\hat{\theta}$ that maximizes $P(\mathcal{D}|\theta)$ with $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$

estimate the optimal parameters of the model
evaluate the predictive distribution on new data points

Maximum Likelihood Methods Maximum A Posteriori Methods Bayesian methods

ML estimation of Gaussian mean

$$N(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right], \text{ with } \theta = \{\mu,\sigma^2\}$$

Log-likelihood of data (i.i.d. samples):

$$\log P(\mathcal{D}|\theta) = \sum_{i=1}^{N} \log N(x_i|\mu,\sigma^2) = -N \log \left(\sqrt{2\pi\sigma}\right) - \sum_{i=1}^{N} \frac{(x_i-\mu)^2}{2\sigma^2}$$

$$0 = \frac{d \log P(\mathcal{D}|\theta)}{d\mu} = \sum_{i=1}^{N} \frac{(x_i - \mu)}{\sigma^2} = \frac{\sum_{i=1}^{N} x_i - N\mu}{\sigma^2} \iff$$
$$\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Maximum Likelihood Methods Maximum A Posteriori Methods Bayesian methods

ML estimation of Gaussian parameters

$$\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x_i$$
$$\hat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{\mu})^2$$

- same result by minimizing the sum of square errors!
- but we make assumptions explicit

Maximum Likelihood Methods Maximum A Posteriori Methods Bayesian methods

Problem: few data points

10 repetitions with 5 points each

Maximum Likelihood Methods Maximum A Posteriori Methods Bayesian methods

Problem: few data points

10 repetitions with 5 points each

Х

Maximum Likelihood Methods Maximum A Posteriori Methods Bayesian methods

Maximum a Posteriori Estimation

$$\hat{\mu}, \hat{\sigma}^2 = \arg \max_{\mu, \sigma^2} \left[\prod_{i=1}^{N} P(x_i | \mu, \sigma^2) P(\mu, \sigma^2) \right]$$

where the prior $P(\mu, \sigma^2)$ needs a nice mathematical form for closed solution

$$\hat{\mu}_{MAP} = \frac{N}{N+\gamma} \hat{\mu}_{ML} + \frac{\gamma}{N+\gamma} \delta$$
$$\hat{\sigma}_{MAP}^{2} = \frac{N}{N+3+2\alpha} \hat{\sigma}_{ML}^{2} + \frac{2\beta+\gamma(\delta+\hat{\mu}_{MAP})^{2}}{N+3+2\alpha}$$

where $\alpha,\beta,\gamma,\delta$ are parameters of the prior distribution

Maximum Likelihood Methods Maximum A Posteriori Methods Bayesian methods

ML, MAP and Point Estimates

- $\bullet\,$ Both ML and MAP produce point estimates of θ
- Assumption: there is a true value for θ
- \bullet advantage: once $\hat{\theta}$ is found, everything is known

Maximum Likelihood Methods Maximum A Posteriori Methods Bayesian methods

Bayesian estimation

- Consider θ as a random variable
- characterize θ with the posterior distribution $P(\theta|D)$ given the data

• for new data points, instead of $P(\mathbf{x}_{\text{new}}|\hat{\theta}_{\text{ML}})$ or $P(\mathbf{x}_{\text{new}}|\hat{\theta}_{\text{MAP}})$, compute:

$$\mathsf{P}(\mathbf{x}_{\mathsf{new}}|\mathcal{D}) = \int_{ heta \in \Theta} \mathsf{P}(\mathbf{x}_{\mathsf{new}}| heta) \mathsf{P}(heta|\mathcal{D}) d heta$$

Maximum Likelihood Methods Maximum A Posteriori Methods Bayesian methods

Bayesian estimation (cont.)

- we can compute $P(\mathbf{x}|\mathcal{D})$ instead of $P(\mathbf{x}|\hat{ heta})$
- integrate the joint density $P(\mathbf{x}, \theta | \mathcal{D}) = P(\mathbf{x} | \theta) P(\theta | \mathcal{D})$

Maximum Likelihood Methods Maximum A Posteriori Methods Bayesian methods

Bayesian estimation

- we can compute $P(\mathbf{x}|\mathcal{D})$ instead of $P(\mathbf{x}|\hat{ heta})$
- integrate the joint density $P(\mathbf{x}, \theta | D) = P(\mathbf{x} | \theta) P(\theta | D)$

Maximum Likelihood Methods Maximum A Posteriori Methods Bayesian methods

Bayesian estimation

- ullet we can compute $P(\mathbf{x}|\mathcal{D})$ instead of $P(\mathbf{x}|\hat{ heta})$
- integrate the joint density $P(\mathbf{x}, \theta | \mathcal{D}) = P(\mathbf{x} | \theta) P(\theta | \mathcal{D})$

Maximum Likelihood Methods Maximum A Posteriori Methods Bayesian methods

Bayesian estimation

- we can compute $P(\mathbf{x}|\mathcal{D})$ instead of $P(\mathbf{x}|\hat{ heta})$
- integrate the joint density $P(\mathbf{x}, \theta | D) = P(\mathbf{x} | \theta) P(\theta | D)$

Maximum Likelihood Methods Maximum A Posteriori Methods Bayesian methods

Bayesian estimation (cont.)

Pros:

- better use of the data
- makes a priori assumptions explicit
- can be implemented recursively (if conjugate prior)
 - use posterior $P(\theta|\mathcal{D})$ as new prior
- reduce overfitting

Cons:

- definition of noninformative priors can be tricky
- often requires numerical integration
- not widely accepted by traditional statistics (frequentism)

Classification vs Clustering Heuristic Example: K-means Expectation Maximization

Clustering vs Classification

Classification

Clustering

x1

Classification vs Clustering Heuristic Example: K-means Expectation Maximization

Fitting complex distributions

We can try to fit a mixture of K distributions:

$$P(\mathbf{x}|\theta) = \sum_{k=1}^{K} \pi_k P(x|\theta_k),$$

with
$$\theta = \{\pi_1, \ldots, \pi_k, \theta_1, \ldots, \theta_K\}$$

Problem:

We do not know which point has been generated by which component of the mixture

We cannot optimize $P(\mathbf{x}|\theta)$ directly

Expectation Maximization

Fitting model parameters with missing (latent) variables

$$P(\mathbf{x}|\theta) = \sum_{k=1}^{K} \pi_k P(x|\theta_k),$$

with $\theta = \{\pi_1, \dots, \pi_k, \theta_1, \dots, \theta_K\}$

- very general idea (applies to many different probabilistic models)
- augment the data with the missing variables: h_{ik} probability that each data point x_i was generated by each component of the mixture k
- optimize the Likelihood of the complete data:

 $P(\mathbf{x}, \mathbf{h}|\theta)$

Classification vs Clustering Heuristic Example: K-means Expectation Maximization

Heuristic Example: K-means

- describes each class with a centroid
- a point belongs to a class if the corresponding centroid is closest (Euclidean distance)
- iterative procedure
- guaranteed to converge
- not guaranteed to find the optimal solution
- used in vector quantization (since the 1950's)

K-means: algorithm

Data: k (number of desired clusters), n data points x_i **Result**: k clusters

initialization: assign initial value to k centroids \mathbf{c}_i ;

repeat

assign each point \mathbf{x}_i to closest centroid \mathbf{c}_j ;

compute new centroids as mean of each group of points;

until centroids do not change;

return k clusters;

Classification vs Clustering Heuristic Example: K-means Expectation Maximization

K-means: example

iteration 20, update clusters

K-means: sensitivity to initial conditions

iteration 20, update clusters

Classification vs Clustering Heuristic Example: K-means Expectation Maximization

K-means: limits of Euclidean distance

- the Euclidean distance is isotropic (same in all directions in \mathbb{R}^p)
- this favours spherical clusters
- the size of the clusters is controlled by their distance

Classification vs Clustering Heuristic Example: K-means Expectation Maximization

K-means: non-spherical classes

two non-spherical classes

Classification vs Clustering Heuristic Example: K-means Expectation Maximization

Expectation Maximization

Fitting model parameters with missing (latent) variables

$$P(\mathbf{x}|\theta) = \sum_{k=1}^{K} \pi_k P(x|\theta_k),$$

with $\theta = \{\pi_1, \dots, \pi_k, \theta_1, \dots, \theta_K\}$

- very general idea (applies to many different probabilistic models)
- augment the data with the missing variables: h_{ik} probability of assignment of each data point x_i to each component of the mixture k
- optimize the Likelihood of the complete data:

 $P(\mathbf{x}, \mathbf{h}|\theta)$

Classification vs Clustering Heuristic Example: K-means Expectation Maximization

Mixture of Gaussians

This distribution is a weight sum of K Gaussian distributions

This model can describe **complex multi-modal** probability distributions by combining simpler distributions.

Classification vs Clustering Heuristic Example: K-means Expectation Maximization

Mixture of Gaussians

$$\mathcal{P}(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x; \mu_k, \sigma_k^2)$$

- Learning the parameters of this model from training data x_1, \ldots, x_n is not trivial using the usual straightforward maximum likelihood approach.
- Instead learn parameters using the Expectation-Maximization (EM) algorithm.

Classification vs Clustering Heuristic Example: K-means Expectation Maximization

Mixture of Gaussians as a marginalization

We can interpret the Mixture of Gaussians model with the introduction of a discrete hidden/latent variable h and P(x, h):

Figures taken from Computer Vision: models, learning and inference by Simon Prince.

Classification vs Clustering Heuristic Example: K-means Expectation Maximization

EM for two Gaussians

Assume: We know the pdf of *x* has this form:

$$P(x) = \pi_1 \mathcal{N}(x; \mu_1, \sigma_1^2) + \pi_2 \mathcal{N}(x; \mu_2, \sigma_2^2)$$

where $\pi_1 + \pi_2 = 1$ and $\pi_k > 0$ for components k = 1, 2.

Unknown: Values of the parameters (Many!)

$$\Theta = (\pi_1, \mu_1, \sigma_1, \mu_2, \sigma_2).$$

Have: Observed *n* samples x_1, \ldots, x_n drawn from P(x).

Want to: Estimate Θ from x_1, \ldots, x_n .

How would it be possible to get them all???

Classification vs Clustering Heuristic Example: K-means Expectation Maximization

EM for two Gaussians

For each sample x_i introduce a hidden variable h_i

$$h_i = \begin{cases} 1 & \text{if sample } x_i \text{ was drawn from } \mathcal{N}(x; \mu_1, \sigma_1^2) \\ 2 & \text{if sample } x_i \text{ was drawn from } \mathcal{N}(x; \mu_2, \sigma_2^2) \end{cases}$$

and come up with initial values

$$\Theta^{(0)} = (\pi_1^{(0)}, \mu_1^{(0)}, \sigma_1^{(0)}, \mu_2^{(0)}, \sigma_2^{(0)})$$

for each of the parameters.

EM is an *iterative algorithm* which updates $\Theta^{(t)}$ using the following two steps...

Classification vs Clustering Heuristic Example: K-means Expectation Maximization

EM for two Gaussians: E-step

The responsibility of k-th Gaussian for each sample x (indicated by the size of the projected data point)

Look at each sample x along hidden variable h in the E-step

Figure from Computer Vision: models, learning and inference by Simon Prince.

EM for two Gaussians: E-step (cont.)

E-step: Compute the "posterior probability" that x_i was generated by component k given the current estimate of the parameters $\Theta^{(t)}$. (responsibilities)

for i = 1, ..., nfor k = 1, 2 $\gamma_{ik}^{(t)} = P(h_i = k | x_i, \Theta^{(t)})$ $= \frac{\pi_k^{(t)} \mathcal{N}(x_i; \mu_k^{(t)}, \sigma_k^{(t)})}{\pi_1^{(t)} \mathcal{N}(x_i; \mu_1^{(t)}, \sigma_1^{(t)}) + \pi_2^{(t)} \mathcal{N}(x_i; \mu_2^{(t)}, \sigma_2^{(t)})}$

Note: $\gamma_{i1}^{(t)} + \gamma_{i2}^{(t)} = 1$ and $\pi_1 + \pi_2 = 1$

Classification vs Clustering Heuristic Example: K-means Expectation Maximization

EM for two Gaussians: M-step

Fitting the Gaussian model for each of k-th constinuetnt. Sample x_i contributes according to the responsibility γ_{ik} .

(dashed and solid lines for fit before and after update)Look along samples x for each h in the M-step

Classification vs Clustering Heuristic Example: K-means Expectation Maximization

EM for two Gaussians: M-step (cont.)

for

M-step: Compute the *Maximum Likelihood* of the parameters of the mixture model given out data's membership distribution, the $\gamma_i^{(t)}$'s:

$$k = 1, 2$$

$$\mu_{k}^{(t+1)} = \frac{\sum_{i=1}^{n} \gamma_{ik}^{(t)} x_{i}}{\sum_{i=1}^{n} \gamma_{ik}^{(t)}},$$

$$\sigma_{k}^{(t+1)} = \sqrt{\frac{\sum_{i=1}^{n} \gamma_{ik}^{(t)} (x_{i} - \mu_{k}^{(t+1)})^{2}}{\sum_{i=1}^{n} \gamma_{ik}^{(t)}}}$$

$$\pi_{k}^{(t+1)} = \frac{\sum_{i=1}^{n} \gamma_{ik}^{(t)}}{n}.$$

Classification vs Clustering Heuristic Example: K-means Expectation Maximization

EM in practice

EM properties

Similar to K-means

- guaranteed to find a local maximum of the complete data likelihood
- somewhat sensitive to initial conditions

Better than K-means

- Gaussian distributions can model clusters with different shapes
- all data points are smoothly used to update all parameters

Model Selection and Overfitting

Overfitting

Overfitting: Phoneme Discrimination

NUMBER OF MIXTURES, m

Occam's Razor

Choose the simplest explanation for the observed data

Important factors:

- number of model parameters
- number of data points
- model fit to the data

Overfitting and Maximum Likelihood

we can make the likelihood arbitrary large by increasing the number of parameters

Occam's Razor and Bayesian Learning

Remember that:

$$P(\mathbf{x}_{\mathsf{new}}|\mathcal{D}) = \int_{\theta \in \Theta} P(\mathbf{x}_{\mathsf{new}}| heta) P(heta|\mathcal{D}) d heta$$

Intuition:

More complex models fit the data very well (large $P(D|\theta)$) but only for small regions of the parameter space Θ .

Summary

Fitting Probability Models

- Maximum Likelihood Methods
- Maximum A Posteriori Methods
- Bayesian methods

2 Unsupervised Learning

- Classification vs Clustering
- Heuristic Example: K-means
- Expectation Maximization

Model Selection and Occam's Razor

If you are interested in learning more take a look at:

C. M. Bishop, *Pattern Recognition and Machine Learning*, Springer Verlag 2006.