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Classification with Probability Distributions

Classification
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x← features

y ∈ {y1, . . . , yK} ← class

k̂ = arg max
k

P(yk |x)

= arg max
k

P(yk)P(x|yk)
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Estimation Theory

in the last lecture we assumed we knew:

P(y)← Prior

P(x | y)← Likelihood

P(x)← Evidence

and we used them to compute the Posterior P(y | x)

How can we obtain this information from
observations (data)?

Estimation Theory ≡ Learning
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Parametric vs Non-Parametric Estimation

Parametric Non Parametric

Bayesian non-parametric methods integrate out the parameters.
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Assumption # 1: Class Independence
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x2 −→

Assumptions:

samples from class i do not influence estimate for class
j , i 6= j

Generative vs discriminative models
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Parameter estimation (cont.)

class independence assumption:
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each distribution is a likelihood in the form P(x|θi ) for class i

in the following we drop the class index and talk about P(x|θ)
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Assumption #2: i.i.d.

Samples from each class are independent and identically
distributed:

D = {x1, . . . , xN}
The likelihood of the whole data set can be factorized:

P(D|θ) = P(x1, . . . , xN |θ) =
N∏

i=1

P(xi |θ)

And the log-likelihood becomes:

logP(D|θ) =
N∑

i=1

logP(xi |θ)
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Three Approaches

Maximum Likelihood (ML)

Maximum A Posteriori (MAP)

Bayesian
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Maximum likelihood estimation: Illustration

Find parameter vector θ̂ that maximizes P(D|θ) with
D = {x1, . . . , xn}

X
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D
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1 estimate the optimal parameters of the model
2 evaluate the predictive distribution on new data points
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Find parameter vector θ̂ that maximizes P(D|θ) with
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1 estimate the optimal parameters of the model

2 evaluate the predictive distribution on new data points
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Maximum likelihood estimation: Illustration

Find parameter vector θ̂ that maximizes P(D|θ) with
D = {x1, . . . , xn}
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1 estimate the optimal parameters of the model
2 evaluate the predictive distribution on new data points
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ML estimation of Gaussian mean

N(x |µ, σ2) =
1√
2πσ

exp

[
−(x − µ)2

2σ2

]
, with θ = {µ, σ2}

Log-likelihood of data (i.i.d. samples):

logP(D|θ) =
N∑

i=1

logN(xi |µ, σ2) = −N log
(√

2πσ
)
−

N∑

i=1

(xi − µ)2

2σ2

0 =
d logP(D|θ)

dµ
=

N∑

i=1

(xi − µ)

σ2
=

∑N
i=1 xi − Nµ

σ2
⇐⇒

µ̂ =
1

N

N∑

i=1

xi
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ML estimation of Gaussian parameters

µ̂ =
1

N

N∑

i=1

xi

σ̂2 =
1

N

N∑

i=1

(xi − µ̂)2

same result by minimizing the sum of square errors!

but we make assumptions explicit
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Problem: few data points

10 repetitions with 5 points each

X

●● ● ●●
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Problem: few data points

10 repetitions with 5 points each

X
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Maximum a Posteriori Estimation

µ̂, σ̂2 = arg max
µ,σ2

[
N∏

i=1

P(xi |µ, σ2)P(µ, σ2)

]

where the prior P(µ, σ2) needs a nice mathematical form for closed
solution

µ̂MAP =
N

N + γ
µ̂ML +

γ

N + γ
δ

σ̂2
MAP =

N

N + 3 + 2α
σ̂2

ML +
2β + γ(δ + µ̂MAP)2

N + 3 + 2α

where α, β, γ, δ are parameters of the prior distribution
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ML, MAP and Point Estimates

Both ML and MAP produce point estimates of θ

Assumption: there is a true value for θ

advantage: once θ̂ is found, everything is known
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Bayesian estimation

Consider θ as a random variable

characterize θ with the posterior distribution P(θ|D) given the
data

ML: D → θ̂ML

MAP: D,P(θ) → θ̂MAP

Bayes: D,P(θ) → P(θ|D)

for new data points, instead of P(xnew|θ̂ML) or P(xnew|θ̂MAP),
compute:

P(xnew|D) =

∫

θ∈Θ
P(xnew|θ)P(θ|D)dθ
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Bayesian estimation (cont.)

we can compute P(x|D) instead of P(x|θ̂)
integrate the joint density P(x, θ|D) = P(x|θ)P(θ|D)

P(x|θ̂)
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Bayesian estimation

we can compute P(x|D) instead of P(x|θ̂)
integrate the joint density P(x, θ|D) = P(x|θ)P(θ|D)

P(x|D) =∫
P(x|θ)P(θ|D)dθ

X
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Bayesian estimation (cont.)

Pros:

better use of the data

makes a priori assumptions explicit

can be implemented recursively (if conjugate prior)

use posterior P(θ|D) as new prior

reduce overfitting

Cons:

definition of noninformative priors can be tricky

often requires numerical integration

not widely accepted by traditional statistics (frequentism)
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Clustering vs Classification

Classification
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Fitting complex distributions

We can try to fit a mixture of K distributions:

P(x|θ) =
K∑

k=1

πkP(x |θk),

with θ = {π1, . . . , πk , θ1, . . . , θK}

Problem:

We do not know which point has been generated by which
component of the mixture

We cannot optimize P(x|θ) directly
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Expectation Maximization

Fitting model parameters with missing (latent) variables

P(x|θ) =
K∑

k=1

πkP(x |θk),

with θ = {π1, . . . , πk , θ1, . . . , θK}

very general idea (applies to many different probabilistic
models)

augment the data with the missing variables: hik probability
that each data point xi was generated by each component of
the mixture k

optimize the Likelihood of the complete data:

P(x,h|θ)
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Heuristic Example: K-means

describes each class with a centroid

a point belongs to a class if the corresponding centroid is
closest (Euclidean distance)

iterative procedure

guaranteed to converge

not guaranteed to find the optimal solution

used in vector quantization (since the 1950’s)
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K-means: algorithm

Data: k (number of desired clusters), n data points xi
Result: k clusters
initialization: assign initial value to k centroids ci ;
repeat

assign each point xi to closest centroid cj ;
compute new centroids as mean of each group of points;

until centroids do not change;
return k clusters;
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Expectation Maximization

K-means: example

iteration 20, update clusters
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K-means: sensitivity to initial conditions

iteration 20, update clusters
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K-means: limits of Euclidean distance

the Euclidean distance is isotropic (same in all directions in
Rp)

this favours spherical clusters

the size of the clusters is controlled by their distance
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K-means: non-spherical classes

two non−spherical classes
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Expectation Maximization

Fitting model parameters with missing (latent) variables

P(x|θ) =
K∑

k=1

πkP(x |θk),

with θ = {π1, . . . , πk , θ1, . . . , θK}

very general idea (applies to many different probabilistic
models)

augment the data with the missing variables: hik probability
of assignment of each data point xi to each component of the
mixture k

optimize the Likelihood of the complete data:

P(x,h|θ)
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Mixture of Gaussians

This distribution is a weight sum of K Gaussian distributions

P(x) =
K∑

k=1

πk N (x ;µk , σ
2
k)

where π1 + · · ·+ πK = 1
and πk > 0 (k = 1, . . . ,K ).

110 7 Modeling complex data densities

Figure 7.6 Mixture of Gaussians
model in 1D. A complex multimodal
probability density function (black
solid curve) is created by taking a
weighted sum or mixture of several
constituent normal distributions with
different means and variances (red,
green and blue dashed curves). To
ensure that the final distribution is
a valid density, the weights must be
positive and sum to one.

the cost function for the M-Step (equation 7.12) improves the bound. For now we
will assume that these things are true and proceed with the main thrust of the
chapter. We will return to these issues in section 7.8.

7.4 Mixture of Gaussians

The mixture of Gaussians (MoG) is a prototypical example of a model where learn-
ing is suited to the EM algorithm. The data is described as a weighted sum of K
normal distributions

Pr(x|θ) =

K�

k=1

λkNormx[µk,Σk], (7.13)

where µ1...K and Σ1...K are the means and covariances of the normal distributions
and λ1...K are positive valued weights that sum to one. The mixtures of Gaussians
model describes complex multi-modal probability densities by combining simpler
constituent distributions (figure 7.6).

To learn the parameters θ = {µk,Σk,λk}K
k=1 from training data {xi}I

i=1 we
could apply the straightforward maximum likelihood approach

θ̂ = argmax
θ

�
I�

i=1

log [Pr(xi|θ)]

�

= argmax
θ

�
I�

i=1

log

�
K�

k=1

λkNormxi
[µk,Σk]

��
. (7.14)

Unfortunately, if we take the derivative with respect to the parameters θ and equate
the resulting expression to zero, it is not possible to solve the resulting equations
in closed form. The sticking point is the summation inside the logarithm which
precludes a simple solution. Of course, we could use a non-linear optimization
approach, but this would be complex as we would have to maintain the constraints
on the parameters; the weights λ must sum to one and the covariances {Σk}K

k=1

Copyright c�2011 by Simon Prince; to be published by Cambridge University Press 2012.
For personal use only, not for distribution.

This model can describe complex multi-modal probability distributions

by combining simpler distributions.
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Mixture of Gaussians

P(x) =
K∑

k=1

πk N (x ;µk , σ
2
k)

Learning the parameters of this model from training data
x1, . . . , xn is not trivial - using the usual straightforward maximum

likelihood approach.

Instead learn parameters using the
Expectation-Maximization (EM) algorithm.
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Mixture of Gaussians as a marginalization

We can interpret the Mixture of Gaussians model with the introduction
of a discrete hidden/latent variable h and P(x , h):

P(x) =
K∑

k=1

P(x , h = k) =
K∑

k=1

P(x | h = k)P(h = k)

=
K∑

k=1

πk N (x ;µk , σ
2
k)
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Figure 7.7 Mixture of Gaussians as
a marginalization. The mixture of
Gaussians can also be thought of in
terms of a joint distribution Pr(x, h)
between the observed variable x and
a discrete hidden variable h. To cre-
ate the mixture density we marginal-
ize over h. The hidden variable has
a straightforward interpretation: it is
the index of the constituent normal
distribution.

must be positive definite. For a simpler approach, we express the observed density
as a marginalization and use the EM algorithm to learn the parameters.

7.4.1 Mixtures of Gaussians as a marginalization

The mixtures of Gaussians model can be expressed as the marginalization of a joint
probability distribution between the observed data x and a discrete hidden variable
h that takes values h ∈ {1 . . . K} (figure 7.7). If we define

Pr(x|h,θ) = Normx[µh,Σh]

Pr(h|θ) = Cath[λ], (7.15)

where λ = [λ1 . . .λK ] are the parameters of the categorical distribution. We can
recover the original density using

Pr(x|θ) =

K�

k=1

Pr(x, h = k|θ)

=

K�

k=1

Pr(x|h = k,θ)Pr(h = k|θ)

=

K�

k=1

λkNormx[µk,Σk]. (7.16)

Interpreting the model in this way also provides a method to draw samples
from a mixture of Gaussians: we sample from the joint distribution Pr(x, h), and
then discard the hidden variable h to leave just a data sample x. To sample from
the joint distribution Pr(x, h) we first sample h from the categorical prior Pr(h),
then sample x from the normal distribution Pr(x|h) associated with the value of
h. Notice that the hidden variable h has a clear interpretation in this procedure:
it determines which of the constituent normal distributions is responsible for the
observed data point x.

Copyright c�2011 by Simon Prince; to be published by Cambridge University Press 2012.
For personal use only, not for distribution.

← mixture density

Figures taken from Computer Vision: models, learning and inference by Simon Prince.
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EM for two Gaussians

Assume: We know the pdf of x has this form:

P(x) = π1N (x ;µ1, σ
2
1) + π2N (x ;µ2, σ

2
2)

where π1 + π2 = 1 and πk > 0 for components k = 1, 2.

Unknown: Values of the parameters (Many!)

Θ = (π1, µ1, σ1, µ2, σ2).

Have: Observed n samples x1, . . . , xn drawn from P(x).

Want to: Estimate Θ from x1, . . . , xn.

How would it be possible to get them all???
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EM for two Gaussians

For each sample xi introduce a hidden variable hi

hi =

{
1 if sample xi was drawn from N (x ;µ1, σ

2
1)

2 if sample xi was drawn from N (x ;µ2, σ
2
2)

and come up with initial values

Θ(0) = (π
(0)
1 , µ

(0)
1 , σ

(0)
1 , µ

(0)
2 , σ

(0)
2 )

for each of the parameters.

EM is an iterative algorithm which updates Θ(t) using the
following two steps...
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EM for two Gaussians: E-step

The responsibility of k-th Gaussian for each sample x (indicated by
the size of the projected data point)112 7 Modeling complex data densities

Figure 7.8 E-Step for fitting the mixture of Gaussians model. For each of
the I data points x1...I , we calculate the posterior distribution Pr(hi|xi)
over the hidden variable hi. The posterior probability Pr(hi = k|xi) that hi

takes value k can be understood as the responsibility of normal distribution
k for data point xi. For example, for data point x1 (magenta circle) the
component 1 (red curve) is more than twice as likely to be responsible than
component 2 (green curve). Note that in the joint distribution (left), the
size of the projected data point indicates the responsibility.

7.4.2 Expectation maximization for fitting mixture models

To learn the MoG parameters θ = {λk, µk,Σk}K
k=1 from training data {xi}I

i=1Algorithm 7.1
we apply the EM algorithm. Following the recipe of section 7.3, we initialize the
parameters randomly and alternate between performing the E- and M-Steps.

In the E-Step, we maximize the bound with respect to the distributions qi(hi)
by finding the posterior probability distribution Pr(hi|xi) of each hidden variable
hi given the observation xi and the current parameter settings,

qi(hi) = Pr(hi = k|xi,θ
[t]) =

Pr(xi|hi = k,θ[t])Pr(hi = k,θ[t])
�K

j=1 Pr(xi|hi = j,θ[t])Pr(hi = j,θ[t])

=
λkNormxi

[µk,Σk]
�K

j=1 λjNormxi
[µj ,Σj ]

= rik. (7.17)

Copyright c�2011 by Simon Prince; to be published by Cambridge University Press 2012.
For personal use only, not for distribution.

Look at each sample x along hidden variable h in the E-step

Figure from Computer Vision: models, learning and inference by Simon Prince.
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EM for two Gaussians: E-step (cont.)

E-step: Compute the “posterior probability” that xi was generated
by component k given the current estimate of the parameters Θ(t).
(responsibilities)

for i = 1, . . . n

for k = 1, 2

γ
(t)
ik = P(hi = k | xi ,Θ(t))

=
π

(t)
k N (xi ;µ

(t)
k , σ

(t)
k )

π
(t)
1 N (xi ;µ

(t)
1 , σ

(t)
1 ) + π

(t)
2 N (xi ;µ

(t)
2 , σ

(t)
2 )

Note: γ(t)
i1 + γ

(t)
i2 = 1 and π1 + π2 = 1
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EM for two Gaussians: M-step

Fitting the Gaussian model for each of k-th constinuetnt.
Sample xi contributes according to the responsibility γik .

7.4 Mixture of Gaussians 113

Figure 7.9 M-Step for fitting the mixture of Gaussians model. For the kth

constituent Gaussian, we update the parameters {λk, µk,Σk}. The ith data
point xi contributes to these updates according to the responsibility rik

(indicated by size of point) assigned in the E-Step; data points that are
more associated with the kth component have more effect on the parameters.
Dashed and solid lines represent fit before and after update respectively.

In other words we compute the probability Pr(hi = k|xi,θ
[t]) that the kth normal

distribution was responsible for the ith data point (figure 7.8). We denote this
responsibility by rik for short.

In the M-Step, we maximize the bound with respect to the parameters θ =
{λk, µk,Σk}K

k=1 so that

θ̂
[t+1]

= argmax
θ

�
I�

i=1

K�

k=1

q̂i(hi = k) log [Pr(xi,hi = k|θ)]

�

= argmax
θ

�
I�

i=1

K�

k=1

rik log [λkNormxi
[µk,Σk]]

�
. (7.18)

This maximization can be performed by taking the derivative of the expression with
Problem 7.3

respect to the parameters, equating the result to zero and rearranging, taking care
to enforce the constraint

�
k λk = 1 using Lagrange multipliers. The procedure

results in the update rules,

Copyright c�2011 by Simon Prince; to be published by Cambridge University Press 2012.
For personal use only, not for distribution.

(dashed and solid lines for fit before and after update)

Look along samples x for each h in the M-step

Figure from Computer Vision: models, learning and inference by Simon Prince.
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EM for two Gaussians: M-step (cont.)

M-step: Compute the Maximum Likelihood of the parameters of
the mixture model given out data’s membership distribution, the

γ
(t)
i ’s:

for k = 1, 2

µ
(t+1)
k =

∑n
i=1 γ

(t)
ik xi∑n

i=1 γ
(t)
ik

,

σ
(t+1)
k =

√√√√
∑n

i=1 γ
(t)
ik (xi − µ(t+1)

k )2

∑n
i=1 γ

(t)
ik

,

π
(t+1)
k =

∑n
i=1 γ

(t)
ik

n
.
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EM in practice
114 7 Modeling complex data densities

Figure 7.10 a) Initial model. b) E-Step. For each data point the posterior
probability that is was generated from each Gaussian is calculated (indicated
by color of point). c) M-Step. The mean, variance and weight of each
Gaussian is updated based on these posterior probabilities. Ellipse shows
Mahalanobis distance of two. Weight (thickness) of ellipse indicates weight
of Gaussian. d-t) Further E-Step and M-Step iterations.

Copyright c�2011 by Simon Prince; to be published by Cambridge University Press 2012.
For personal use only, not for distribution.
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EM properties

Similar to K-means

guaranteed to find a local maximum of the complete data
likelihood

somewhat sensitive to initial conditions

Better than K-means

Gaussian distributions can model clusters with different shapes

all data points are smoothly used to update all parameters
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Model Selection and Overfitting

X

● ● ●
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Overfitting
f
(x
)

x
f
(x
)

x
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Overfitting: Phoneme Discrimination
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Occam’s Razor

Choose the simplest explanation for the observed data

Important factors:

number of model parameters

number of data points

model fit to the data
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Overfitting and Maximum Likelihood

we can make the likelihood arbitrary large by
increasing the number of parameters

X

● ● ●
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Occam’s Razor and Bayesian Learning

Remember that:

P(xnew|D) =

∫

θ∈Θ
P(xnew|θ)P(θ|D)dθ

Intuition:

More complex models fit the data very well (large P(D|θ)) but
only for small regions of the parameter space Θ.
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Summary

1 Fitting Probability Models
Maximum Likelihood Methods
Maximum A Posteriori Methods
Bayesian methods

2 Unsupervised Learning
Classification vs Clustering
Heuristic Example: K-means
Expectation Maximization

3 Model Selection and Occam’s Razor

If you are interested in learning more take a look at:

C. M. Bishop, Pattern Recognition and Machine Learning, Springer Verlag

2006.

Giampiero Salvi Lecture 4: Probabilistic Learning


	Fitting Probability Models
	Maximum Likelihood Methods
	Maximum A Posteriori Methods
	Bayesian methods

	Unsupervised Learning
	Classification vs Clustering
	Heuristic Example: K-means
	Expectation Maximization

	Model Selection and Occam's Razor

