
Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

MVC And Frameworks in a
PHP Web Application
Internet Applications, ID1354

1 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Contents

MVC in a PHP Web Application

The id1354-fw Framework

2 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Section

MVC in a PHP Web Application

The id1354-fw Framework

3 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Object Oriented Design!

I We want the code to be easy to modify and
easy to understand. To achieve this we
need (among other things):

I High Cohesion, Each class, method, etc
has well-defined knowledge and a
well-defined task.

I Low coupling, Objects and subsystems do
not depend on each other more than
necessary.

I Encapsulation, Objects and subsystems do
not reveal their internals.

4 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Object Oriented Design!

I We want the code to be easy to modify and
easy to understand. To achieve this we
need (among other things):

I High Cohesion, Each class, method, etc
has well-defined knowledge and a
well-defined task.

I Low coupling, Objects and subsystems do
not depend on each other more than
necessary.

I Encapsulation, Objects and subsystems do
not reveal their internals.

4 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Object Oriented Design!

I We want the code to be easy to modify and
easy to understand. To achieve this we
need (among other things):

I High Cohesion, Each class, method, etc
has well-defined knowledge and a
well-defined task.

I Low coupling, Objects and subsystems do
not depend on each other more than
necessary.

I Encapsulation, Objects and subsystems do
not reveal their internals.

4 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Object Oriented Design!

I We want the code to be easy to modify and
easy to understand. To achieve this we
need (among other things):

I High Cohesion, Each class, method, etc
has well-defined knowledge and a
well-defined task.

I Low coupling, Objects and subsystems do
not depend on each other more than
necessary.

I Encapsulation, Objects and subsystems do
not reveal their internals.

4 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

The MVC Architectural Pattern
I The MVC pattern states that the application contains

the layers Model, View and Controller.

I View contains all code related to the user interface,
but no other code. User interface code includes both
code that generates a UI and code that interprets
user actions.

I Model contains all data and methods that operate on
the data. This is the actual functionality of the
application.

I Controller is an intermediary between View and
Model. Each user action should correspond to one
method call from view to controller. It is the task of
the controller to know in detail which objects and
methods in the model should be called (and in which
order) to perform a particular task.

5 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

The MVC Architectural Pattern
I The MVC pattern states that the application contains

the layers Model, View and Controller.

I View contains all code related to the user interface,
but no other code. User interface code includes both
code that generates a UI and code that interprets
user actions.

I Model contains all data and methods that operate on
the data. This is the actual functionality of the
application.

I Controller is an intermediary between View and
Model. Each user action should correspond to one
method call from view to controller. It is the task of
the controller to know in detail which objects and
methods in the model should be called (and in which
order) to perform a particular task.

5 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

The MVC Architectural Pattern
I The MVC pattern states that the application contains

the layers Model, View and Controller.

I View contains all code related to the user interface,
but no other code. User interface code includes both
code that generates a UI and code that interprets
user actions.

I Model contains all data and methods that operate on
the data. This is the actual functionality of the
application.

I Controller is an intermediary between View and
Model. Each user action should correspond to one
method call from view to controller. It is the task of
the controller to know in detail which objects and
methods in the model should be called (and in which
order) to perform a particular task.

5 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

The MVC Architectural Pattern
I The MVC pattern states that the application contains

the layers Model, View and Controller.

I View contains all code related to the user interface,
but no other code. User interface code includes both
code that generates a UI and code that interprets
user actions.

I Model contains all data and methods that operate on
the data. This is the actual functionality of the
application.

I Controller is an intermediary between View and
Model. Each user action should correspond to one
method call from view to controller. It is the task of
the controller to know in detail which objects and
methods in the model should be called (and in which
order) to perform a particular task.

5 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Remember: Server-Side Layers

I The server has the same layers as
a stand-alone MVC architecture.

I The server’s view layer gets HTTP
requests and creates HTTP
responses.

I The MVC pattern states that all UI
related code shall be in the view.
From controller and down there is
only plain object-oriented code.

I This means that controller and lower layers are
coded exactly as for a stand-alone application. Only
the view is specific for a web application.

6 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Remember: Server-Side Layers

I The server has the same layers as
a stand-alone MVC architecture.

I The server’s view layer gets HTTP
requests and creates HTTP
responses.

I The MVC pattern states that all UI
related code shall be in the view.
From controller and down there is
only plain object-oriented code.

I This means that controller and lower layers are
coded exactly as for a stand-alone application. Only
the view is specific for a web application.

6 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Remember: Server-Side Layers

I The server has the same layers as
a stand-alone MVC architecture.

I The server’s view layer gets HTTP
requests and creates HTTP
responses.

I The MVC pattern states that all UI
related code shall be in the view.
From controller and down there is
only plain object-oriented code.

I This means that controller and lower layers are
coded exactly as for a stand-alone application. Only
the view is specific for a web application.

6 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Remember: Server-Side Layers

I The server has the same layers as
a stand-alone MVC architecture.

I The server’s view layer gets HTTP
requests and creates HTTP
responses.

I The MVC pattern states that all UI
related code shall be in the view.
From controller and down there is
only plain object-oriented code.

I This means that controller and lower layers are
coded exactly as for a stand-alone application. Only
the view is specific for a web application.

6 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Class Files

I It is a good practice to organize
server-side code as in a Java
application. One file per class and one
directory per namespace.

I Place all classes in a separate
directory, for example classes.

I Protect classes from direct HTTP
access by denying access to the
classes directory.

I Enable autoloading classes, see
below. This relieves us of include
and require statements.

7 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Class Files

I It is a good practice to organize
server-side code as in a Java
application. One file per class and one
directory per namespace.

I Place all classes in a separate
directory, for example classes.

I Protect classes from direct HTTP
access by denying access to the
classes directory.

I Enable autoloading classes, see
below. This relieves us of include
and require statements.

7 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Class Files

I It is a good practice to organize
server-side code as in a Java
application. One file per class and one
directory per namespace.

I Place all classes in a separate
directory, for example classes.

I Protect classes from direct HTTP
access by denying access to the
classes directory.

I Enable autoloading classes, see
below. This relieves us of include
and require statements.

7 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Class Files
I It is a good practice to organize

server-side code as in a Java
application. One file per class and one
directory per namespace.

I Place all classes in a separate
directory, for example classes.

I Protect classes from direct HTTP
access by denying access to the
classes directory.

I Enable autoloading classes, see
below. This relieves us of include
and require statements.

7 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

View Files
I We would like to place the view in

classes. However:
I We do not want HTML in our

PHP classes.

I We do not want HTTP access to
our classes directory.

I We can not write a URL that
addresses a method in a class.
A URL can only address a file.

I Therefore, we need a PHP file without
classes to interpret the HTTP request
and direct it to the correct classes.

I If the response is a HTML document,
we also need to include a HTML file,
since we do not want to mix the HTML
document with the PHP classes.

8 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

View Files
I We would like to place the view in

classes. However:
I We do not want HTML in our

PHP classes.
I We do not want HTTP access to

our classes directory.

I We can not write a URL that
addresses a method in a class.
A URL can only address a file.

I Therefore, we need a PHP file without
classes to interpret the HTTP request
and direct it to the correct classes.

I If the response is a HTML document,
we also need to include a HTML file,
since we do not want to mix the HTML
document with the PHP classes.

8 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

View Files
I We would like to place the view in

classes. However:
I We do not want HTML in our

PHP classes.
I We do not want HTTP access to

our classes directory.
I We can not write a URL that

addresses a method in a class.
A URL can only address a file.

I Therefore, we need a PHP file without
classes to interpret the HTTP request
and direct it to the correct classes.

I If the response is a HTML document,
we also need to include a HTML file,
since we do not want to mix the HTML
document with the PHP classes.

8 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

View Files
I We would like to place the view in

classes. However:
I We do not want HTML in our

PHP classes.
I We do not want HTTP access to

our classes directory.
I We can not write a URL that

addresses a method in a class.
A URL can only address a file.

I Therefore, we need a PHP file without
classes to interpret the HTTP request
and direct it to the correct classes.

I If the response is a HTML document,
we also need to include a HTML file,
since we do not want to mix the HTML
document with the PHP classes.

8 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

View Files
I We would like to place the view in

classes. However:
I We do not want HTML in our

PHP classes.
I We do not want HTTP access to

our classes directory.
I We can not write a URL that

addresses a method in a class.
A URL can only address a file.

I Therefore, we need a PHP file without
classes to interpret the HTTP request
and direct it to the correct classes.

I If the response is a HTML document,
we also need to include a HTML file,
since we do not want to mix the HTML
document with the PHP classes. 8 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

View Files
I We would like to place the view in

classes. However:
I We do not want HTML in our

PHP classes.
I We do not want HTTP access to

our classes directory.
I We can not write a URL that

addresses a method in a class.
A URL can only address a file.

I Therefore, we need a PHP file without
classes to interpret the HTTP request
and direct it to the correct classes.

I If the response is a HTML document,
we also need to include a HTML file,
since we do not want to mix the HTML
document with the PHP classes. 8 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Warning: Infrastructure Code!

I There will be quite a lot of code that is
identical for each application, for example
to:

I Include class files (load classes).

I Route a HTTP request to a method in a class.
I Read HTTP parameters.
I Include the file with the next view.
I Include fragments (header, footer, etc) in the

view.

I This is called infrastructure code and is a
strong call for a framework.

9 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Warning: Infrastructure Code!

I There will be quite a lot of code that is
identical for each application, for example
to:

I Include class files (load classes).
I Route a HTTP request to a method in a class.

I Read HTTP parameters.
I Include the file with the next view.
I Include fragments (header, footer, etc) in the

view.

I This is called infrastructure code and is a
strong call for a framework.

9 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Warning: Infrastructure Code!

I There will be quite a lot of code that is
identical for each application, for example
to:

I Include class files (load classes).
I Route a HTTP request to a method in a class.
I Read HTTP parameters.

I Include the file with the next view.
I Include fragments (header, footer, etc) in the

view.

I This is called infrastructure code and is a
strong call for a framework.

9 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Warning: Infrastructure Code!

I There will be quite a lot of code that is
identical for each application, for example
to:

I Include class files (load classes).
I Route a HTTP request to a method in a class.
I Read HTTP parameters.
I Include the file with the next view.

I Include fragments (header, footer, etc) in the
view.

I This is called infrastructure code and is a
strong call for a framework.

9 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Warning: Infrastructure Code!

I There will be quite a lot of code that is
identical for each application, for example
to:

I Include class files (load classes).
I Route a HTTP request to a method in a class.
I Read HTTP parameters.
I Include the file with the next view.
I Include fragments (header, footer, etc) in the

view.

I This is called infrastructure code and is a
strong call for a framework.

9 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Warning: Infrastructure Code!

I There will be quite a lot of code that is
identical for each application, for example
to:

I Include class files (load classes).
I Route a HTTP request to a method in a class.
I Read HTTP parameters.
I Include the file with the next view.
I Include fragments (header, footer, etc) in the

view.

I This is called infrastructure code and is a
strong call for a framework.

9 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Warning: Infrastructure Code!

I There will be quite a lot of code that is
identical for each application, for example
to:

I Include class files (load classes).
I Route a HTTP request to a method in a class.
I Read HTTP parameters.
I Include the file with the next view.
I Include fragments (header, footer, etc) in the

view.

I This is called infrastructure code and is a
strong call for a framework.

9 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

We Must Use a Framework

I A framework is necessary to:
I Reuse code from previous applications.

I Avoid the big risk of bad architecture.
I Avoid writing new code which means

introducing new bugs.
I Thoroughly tested and proven to work well.
I Lots of documentation, easy to get help.
I Infrastructure code is difficult to write.
I Preferably, the framework should use

callbacks, i.e., the framework calls our code.
Thus, the framework also handles flow control.

10 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

We Must Use a Framework

I A framework is necessary to:
I Reuse code from previous applications.
I Avoid the big risk of bad architecture.

I Avoid writing new code which means
introducing new bugs.

I Thoroughly tested and proven to work well.
I Lots of documentation, easy to get help.
I Infrastructure code is difficult to write.
I Preferably, the framework should use

callbacks, i.e., the framework calls our code.
Thus, the framework also handles flow control.

10 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

We Must Use a Framework

I A framework is necessary to:
I Reuse code from previous applications.
I Avoid the big risk of bad architecture.
I Avoid writing new code which means

introducing new bugs.

I Thoroughly tested and proven to work well.
I Lots of documentation, easy to get help.
I Infrastructure code is difficult to write.
I Preferably, the framework should use

callbacks, i.e., the framework calls our code.
Thus, the framework also handles flow control.

10 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

We Must Use a Framework

I A framework is necessary to:
I Reuse code from previous applications.
I Avoid the big risk of bad architecture.
I Avoid writing new code which means

introducing new bugs.
I Thoroughly tested and proven to work well.

I Lots of documentation, easy to get help.
I Infrastructure code is difficult to write.
I Preferably, the framework should use

callbacks, i.e., the framework calls our code.
Thus, the framework also handles flow control.

10 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

We Must Use a Framework

I A framework is necessary to:
I Reuse code from previous applications.
I Avoid the big risk of bad architecture.
I Avoid writing new code which means

introducing new bugs.
I Thoroughly tested and proven to work well.
I Lots of documentation, easy to get help.

I Infrastructure code is difficult to write.
I Preferably, the framework should use

callbacks, i.e., the framework calls our code.
Thus, the framework also handles flow control.

10 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

We Must Use a Framework

I A framework is necessary to:
I Reuse code from previous applications.
I Avoid the big risk of bad architecture.
I Avoid writing new code which means

introducing new bugs.
I Thoroughly tested and proven to work well.
I Lots of documentation, easy to get help.
I Infrastructure code is difficult to write.

I Preferably, the framework should use
callbacks, i.e., the framework calls our code.
Thus, the framework also handles flow control.

10 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

We Must Use a Framework

I A framework is necessary to:
I Reuse code from previous applications.
I Avoid the big risk of bad architecture.
I Avoid writing new code which means

introducing new bugs.
I Thoroughly tested and proven to work well.
I Lots of documentation, easy to get help.
I Infrastructure code is difficult to write.
I Preferably, the framework should use

callbacks, i.e., the framework calls our code.
Thus, the framework also handles flow control.

10 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

We Must Use a Framework

I A framework is necessary to:
I Reuse code from previous applications.
I Avoid the big risk of bad architecture.
I Avoid writing new code which means

introducing new bugs.
I Thoroughly tested and proven to work well.
I Lots of documentation, easy to get help.
I Infrastructure code is difficult to write.
I Preferably, the framework should use

callbacks, i.e., the framework calls our code.
Thus, the framework also handles flow control.

10 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Exactly What is the Framework’s
Task?

I First, we will look at the chat application
without a framework, to get a feeling for
what is needed.

I We will look at a sample request, namely to
write a new entry in the conversation.

I Then, we will identify what we need the
framework to do.

I Third, we will look at the chat with a
framework.

11 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Exactly What is the Framework’s
Task?

I First, we will look at the chat application
without a framework, to get a feeling for
what is needed.

I We will look at a sample request, namely to
write a new entry in the conversation.

I Then, we will identify what we need the
framework to do.

I Third, we will look at the chat with a
framework.

11 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Exactly What is the Framework’s
Task?

I First, we will look at the chat application
without a framework, to get a feeling for
what is needed.

I We will look at a sample request, namely to
write a new entry in the conversation.

I Then, we will identify what we need the
framework to do.

I Third, we will look at the chat with a
framework.

11 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Exactly What is the Framework’s
Task?

I First, we will look at the chat application
without a framework, to get a feeling for
what is needed.

I We will look at a sample request, namely to
write a new entry in the conversation.

I Then, we will identify what we need the
framework to do.

I Third, we will look at the chat with a
framework.

11 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

New Entry, store-entry.php
1 namespace Chat\View;
2 use \Chat\Util\Util;
3 use \Chat\Model\Entry;
4 use Chat\Controller\SessionManager;
5
6 require_once ’classes/Chat/Util/Util.php’;
7 Util::initRequest();
8
9 if (empty($_POST[CHAT_MSG_KEY])) {

10 $msg = "";
11 } else {
12 $msg = $_POST[CHAT_MSG_KEY];
13 }
14
15 $controller = SessionManager::getController();
16 $controller->addEntry(new Entry($controller->getUsername(), $msg));
17 $entries = $controller->getConversation();
18 $username = $controller->getUsername();
19 SessionManager::storeController($controller);
20
21 include CHAT_VIEWS . ’conversation.php’;

I The HTML form with the new entry is submitted to
store-entry.php

I Line 6 loads the Util class. Since the autoloader is not yet
registered, it is loaded manually.

I Line 7 calls the initRequest method, which performs tasks
similar for all requests.

12 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

New Entry, store-entry.php
1 namespace Chat\View;
2 use \Chat\Util\Util;
3 use \Chat\Model\Entry;
4 use Chat\Controller\SessionManager;
5
6 require_once ’classes/Chat/Util/Util.php’;
7 Util::initRequest();
8
9 if (empty($_POST[CHAT_MSG_KEY])) {

10 $msg = "";
11 } else {
12 $msg = $_POST[CHAT_MSG_KEY];
13 }
14
15 $controller = SessionManager::getController();
16 $controller->addEntry(new Entry($controller->getUsername(), $msg));
17 $entries = $controller->getConversation();
18 $username = $controller->getUsername();
19 SessionManager::storeController($controller);
20
21 include CHAT_VIEWS . ’conversation.php’;

I The HTML form with the new entry is submitted to
store-entry.php

I Line 6 loads the Util class. Since the autoloader is not yet
registered, it is loaded manually.

I Line 7 calls the initRequest method, which performs tasks
similar for all requests.

12 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

New Entry, store-entry.php
1 namespace Chat\View;
2 use \Chat\Util\Util;
3 use \Chat\Model\Entry;
4 use Chat\Controller\SessionManager;
5
6 require_once ’classes/Chat/Util/Util.php’;
7 Util::initRequest();
8
9 if (empty($_POST[CHAT_MSG_KEY])) {

10 $msg = "";
11 } else {
12 $msg = $_POST[CHAT_MSG_KEY];
13 }
14
15 $controller = SessionManager::getController();
16 $controller->addEntry(new Entry($controller->getUsername(), $msg));
17 $entries = $controller->getConversation();
18 $username = $controller->getUsername();
19 SessionManager::storeController($controller);
20
21 include CHAT_VIEWS . ’conversation.php’;

I The HTML form with the new entry is submitted to
store-entry.php

I Line 6 loads the Util class. Since the autoloader is not yet
registered, it is loaded manually.

I Line 7 calls the initRequest method, which performs tasks
similar for all requests.

12 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

store-entry.php (Cont’d)
1 namespace Chat\View;
2 use \Chat\Util\Util;
3 use \Chat\Model\Entry;
4 use Chat\Controller\SessionManager;
5
6 require_once ’classes/Chat/Util/Util.php’;
7 Util::initRequest();
8
9 if (empty($_POST[CHAT_MSG_KEY])) {

10 $msg = "";
11 } else {
12 $msg = $_POST[CHAT_MSG_KEY];
13 }
14
15 $controller = SessionManager::getController();
16 $controller->addEntry(new Entry($controller->getUsername(), $msg));
17 $entries = $controller->getConversation();
18 $username = $controller->getUsername();
19 SessionManager::storeController($controller);
20
21 include CHAT_VIEWS . ’conversation.php’;

I Lines 9-13 sets $msg to the value of the HTTP parameter with
the new entry. If there is no such parameter, it is set to the
empty string.

I Line 15 gets the controller of the current session. Remember
that all state is lost after a request. We have to store the
controller, with its references to the model, in the session.

13 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

store-entry.php (Cont’d)
1 namespace Chat\View;
2 use \Chat\Util\Util;
3 use \Chat\Model\Entry;
4 use Chat\Controller\SessionManager;
5
6 require_once ’classes/Chat/Util/Util.php’;
7 Util::initRequest();
8
9 if (empty($_POST[CHAT_MSG_KEY])) {

10 $msg = "";
11 } else {
12 $msg = $_POST[CHAT_MSG_KEY];
13 }
14
15 $controller = SessionManager::getController();
16 $controller->addEntry(new Entry($controller->getUsername(), $msg));
17 $entries = $controller->getConversation();
18 $username = $controller->getUsername();
19 SessionManager::storeController($controller);
20
21 include CHAT_VIEWS . ’conversation.php’;

I Lines 9-13 sets $msg to the value of the HTTP parameter with
the new entry. If there is no such parameter, it is set to the
empty string.

I Line 15 gets the controller of the current session. Remember
that all state is lost after a request. We have to store the
controller, with its references to the model, in the session.

13 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

store-entry.php (Cont’d)
1 namespace Chat\View;
2 use \Chat\Util\Util;
3 use \Chat\Model\Entry;
4 use Chat\Controller\SessionManager;
5
6 require_once ’classes/Chat/Util/Util.php’;
7 Util::initRequest();
8
9 if (empty($_POST[CHAT_MSG_KEY])) {

10 $msg = "";
11 } else {
12 $msg = $_POST[CHAT_MSG_KEY];
13 }
14
15 $controller = SessionManager::getController();
16 $controller->addEntry(new Entry($controller->getUsername(), $msg));
17 $entries = $controller->getConversation();
18 $username = $controller->getUsername();
19 SessionManager::storeController($controller);
20
21 include CHAT_VIEWS . ’conversation.php’;

I Line 16 is the method call to the controller. This is where all
request handling is done, the new entry is stored.

I Lines 17-18 calls the controller to get data that is needed in the
next view.

I Line 19 again stores the controller in the session, for use in the
next request.

14 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

store-entry.php (Cont’d)
1 namespace Chat\View;
2 use \Chat\Util\Util;
3 use \Chat\Model\Entry;
4 use Chat\Controller\SessionManager;
5
6 require_once ’classes/Chat/Util/Util.php’;
7 Util::initRequest();
8
9 if (empty($_POST[CHAT_MSG_KEY])) {

10 $msg = "";
11 } else {
12 $msg = $_POST[CHAT_MSG_KEY];
13 }
14
15 $controller = SessionManager::getController();
16 $controller->addEntry(new Entry($controller->getUsername(), $msg));
17 $entries = $controller->getConversation();
18 $username = $controller->getUsername();
19 SessionManager::storeController($controller);
20
21 include CHAT_VIEWS . ’conversation.php’;

I Line 16 is the method call to the controller. This is where all
request handling is done, the new entry is stored.

I Lines 17-18 calls the controller to get data that is needed in the
next view.

I Line 19 again stores the controller in the session, for use in the
next request. 14 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

store-entry.php (Cont’d)
1 namespace Chat\View;
2 use \Chat\Util\Util;
3 use \Chat\Model\Entry;
4 use Chat\Controller\SessionManager;
5
6 require_once ’classes/Chat/Util/Util.php’;
7 Util::initRequest();
8
9 if (empty($_POST[CHAT_MSG_KEY])) {

10 $msg = "";
11 } else {
12 $msg = $_POST[CHAT_MSG_KEY];
13 }
14
15 $controller = SessionManager::getController();
16 $controller->addEntry(new Entry($controller->getUsername(), $msg));
17 $entries = $controller->getConversation();
18 $username = $controller->getUsername();
19 SessionManager::storeController($controller);
20
21 include CHAT_VIEWS . ’conversation.php’;

I Line 16 is the method call to the controller. This is where all
request handling is done, the new entry is stored.

I Lines 17-18 calls the controller to get data that is needed in the
next view.

I Line 19 again stores the controller in the session, for use in the
next request. 14 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

store-entry.php (Cont’d)
1 namespace Chat\View;
2 use \Chat\Util\Util;
3 use \Chat\Model\Entry;
4 use Chat\Controller\SessionManager;
5
6 require_once ’classes/Chat/Util/Util.php’;
7 Util::initRequest();
8
9 if (empty($_POST[CHAT_MSG_KEY])) {

10 $msg = "";
11 } else {
12 $msg = $_POST[CHAT_MSG_KEY];
13 }
14
15 $controller = SessionManager::getController();
16 $controller->addEntry(new Entry($controller->getUsername(), $msg));
17 $entries = $controller->getConversation();
18 $username = $controller->getUsername();
19 SessionManager::storeController($controller);
20
21 include CHAT_VIEWS . ’conversation.php’;

I Line 21 includes the file with the next view. Note that the
variables $entries and $username are available in that
file.

15 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Util.php
1 public static function initRequest() {
2 spl_autoload_register(function ($class) {
3 require_once ’classes/’ .
4 \str_replace(’\\’, ’/’, $class) .
5 ’.php’;
6 });
7
8 session_start();
9 self::defineConstants();

10 }

I Lines 2-6 registers the autoloader.
I Line 8 starts a session if there is none.

I Line 9 creates constants for HTTP parameter keys:
1 const SYMBOL_PREFIX = "CHAT_";
2 private static function defineConstants() {
3 self::defineConstant(’MSG_KEY’, ’msg’);
4 self::defineConstant(’NICK_KEY’, ’nickName’);
5 self::defineConstant(’TIMESTAMP_KEY’, ’timestamp’);
6 self::defineConstant(’VIEWS’, ’resources/views/’);
7 self::defineConstant(’FRAGMENTS’, ’resources/fragments/’);
8 }
9 private static function defineConstant($param, $value) {

10 define(self::SYMBOL_PREFIX . $param, $value);
11 }

16 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Util.php
1 public static function initRequest() {
2 spl_autoload_register(function ($class) {
3 require_once ’classes/’ .
4 \str_replace(’\\’, ’/’, $class) .
5 ’.php’;
6 });
7
8 session_start();
9 self::defineConstants();

10 }

I Lines 2-6 registers the autoloader.
I Line 8 starts a session if there is none.
I Line 9 creates constants for HTTP parameter keys:

1 const SYMBOL_PREFIX = "CHAT_";
2 private static function defineConstants() {
3 self::defineConstant(’MSG_KEY’, ’msg’);
4 self::defineConstant(’NICK_KEY’, ’nickName’);
5 self::defineConstant(’TIMESTAMP_KEY’, ’timestamp’);
6 self::defineConstant(’VIEWS’, ’resources/views/’);
7 self::defineConstant(’FRAGMENTS’, ’resources/fragments/’);
8 }
9 private static function defineConstant($param, $value) {

10 define(self::SYMBOL_PREFIX . $param, $value);
11 }

16 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Util.php
1 public static function initRequest() {
2 spl_autoload_register(function ($class) {
3 require_once ’classes/’ .
4 \str_replace(’\\’, ’/’, $class) .
5 ’.php’;
6 });
7
8 session_start();
9 self::defineConstants();

10 }

I Lines 2-6 registers the autoloader.
I Line 8 starts a session if there is none.
I Line 9 creates constants for HTTP parameter keys:

1 const SYMBOL_PREFIX = "CHAT_";
2 private static function defineConstants() {
3 self::defineConstant(’MSG_KEY’, ’msg’);
4 self::defineConstant(’NICK_KEY’, ’nickName’);
5 self::defineConstant(’TIMESTAMP_KEY’, ’timestamp’);
6 self::defineConstant(’VIEWS’, ’resources/views/’);
7 self::defineConstant(’FRAGMENTS’, ’resources/fragments/’);
8 }
9 private static function defineConstant($param, $value) {

10 define(self::SYMBOL_PREFIX . $param, $value);
11 }

16 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

SessionManager.php
1 const CONTROLLER_KEY = ’controller’;
2
3 public static function getController() {
4 if (isset($_SESSION[self::CONTROLLER_KEY])) {
5 return unserialize($_SESSION[self::CONTROLLER_KEY]);
6 } else {
7 return new Controller();
8 }
9 }

10
11 public static function storeController(Controller $controller) {
12 $_SESSION[self::CONTROLLER_KEY] = serialize($controller);
13 }

I Line 4 checks if a Controller object is
stored in the session.

I Line 5 reads the stored Controller.

I Line 7 creates a new Controller.
I Line 12 stores the Controller in the

session.

17 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

SessionManager.php
1 const CONTROLLER_KEY = ’controller’;
2
3 public static function getController() {
4 if (isset($_SESSION[self::CONTROLLER_KEY])) {
5 return unserialize($_SESSION[self::CONTROLLER_KEY]);
6 } else {
7 return new Controller();
8 }
9 }

10
11 public static function storeController(Controller $controller) {
12 $_SESSION[self::CONTROLLER_KEY] = serialize($controller);
13 }

I Line 4 checks if a Controller object is
stored in the session.

I Line 5 reads the stored Controller.
I Line 7 creates a new Controller.

I Line 12 stores the Controller in the
session.

17 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

SessionManager.php
1 const CONTROLLER_KEY = ’controller’;
2
3 public static function getController() {
4 if (isset($_SESSION[self::CONTROLLER_KEY])) {
5 return unserialize($_SESSION[self::CONTROLLER_KEY]);
6 } else {
7 return new Controller();
8 }
9 }

10
11 public static function storeController(Controller $controller) {
12 $_SESSION[self::CONTROLLER_KEY] = serialize($controller);
13 }

I Line 4 checks if a Controller object is
stored in the session.

I Line 5 reads the stored Controller.
I Line 7 creates a new Controller.
I Line 12 stores the Controller in the

session.
17 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

SessionManager.php
1 const CONTROLLER_KEY = ’controller’;
2
3 public static function getController() {
4 if (isset($_SESSION[self::CONTROLLER_KEY])) {
5 return unserialize($_SESSION[self::CONTROLLER_KEY]);
6 } else {
7 return new Controller();
8 }
9 }

10
11 public static function storeController(Controller $controller) {
12 $_SESSION[self::CONTROLLER_KEY] = serialize($controller);
13 }

I Line 4 checks if a Controller object is
stored in the session.

I Line 5 reads the stored Controller.
I Line 7 creates a new Controller.
I Line 12 stores the Controller in the

session.
17 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

The view, conversation.php
I The view should consist of only HTML.

Unfortunately, this goal is not reached:
I First, since there are header, footer and

navigation fragments that appear on each
page, we have to include them to avoid
duplicated code. These inclusions are PHP
statements, see lines 2 and 6 below.

1 ...
2 <header class="section group">
3 <?php include CHAT_FRAGMENTS . ’header.php’ ?>
4 </header>
5
6 <main class="section group">
7 <nav class="section group">
8 <?php include CHAT_FRAGMENTS . ’nav.php’ ?>
9 </nav>

10 ...

18 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

The view, conversation.php
I The view should consist of only HTML.

Unfortunately, this goal is not reached:
I First, since there are header, footer and

navigation fragments that appear on each
page, we have to include them to avoid
duplicated code. These inclusions are PHP
statements, see lines 2 and 6 below.

1 ...
2 <header class="section group">
3 <?php include CHAT_FRAGMENTS . ’header.php’ ?>
4 </header>
5
6 <main class="section group">
7 <nav class="section group">
8 <?php include CHAT_FRAGMENTS . ’nav.php’ ?>
9 </nav>

10 ...

18 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

The view (Cont’d)
I Second, to generate the conversation view from the
$entries variable is also PHP code.

1 ...
2 <div class="col span_4_of_4">
3 <?php
4 foreach ($entries as $entry) {
5 if (!$entry->isDeleted()) {
6 echo ("<p class=’author’>" . $entry->getNickName() . ":</p>");
7 echo("<p class=’entry’>");
8 echo(nl2br($entry->getMsg()));
9 echo ("</p>");

10 if ($entry->getNickName() === $username) {
11 echo("<form action=’delete-entry.php’>");
12 echo("<input type=’hidden’ name=’timestamp’ value=’" .
13 $entry->getTimestamp() . "’/>");
14 echo("<input type=’submit’ value=’Delete’/>");
15 echo("</form>");
16 }
17 }
18 }
19 ?>
20 </div>
21 ...

19 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Other Layers, No Problem

I Now we have seen all view code related to
creating a new entry in the conversation.
The view is normally the hardest part of a
web application.

I Controller and lower layers are plain PHP
code, created with normal object-oriented
analysis, design and programming
methodologies.

20 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Other Layers, No Problem

I Now we have seen all view code related to
creating a new entry in the conversation.
The view is normally the hardest part of a
web application.

I Controller and lower layers are plain PHP
code, created with normal object-oriented
analysis, design and programming
methodologies.

20 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Question 1

21 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Let’s Look for Infrastructure Code
I In store-entry, Util and
SessionManager there is no code at all
specific for this application!

I One could argue that the call to the
controller in store-entry.php is
application specific.

I However, we are rid of also this line if the
framework allows us to specify a
URL-to-method mapping, which most
frameworks do.

I One could also argue that the names of the
HTTP parameters are application specific.

I But, most frameworks enable specifying those
as method parameters in the URL-to-method-
mapping!

22 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Let’s Look for Infrastructure Code
I In store-entry, Util and
SessionManager there is no code at all
specific for this application!

I One could argue that the call to the
controller in store-entry.php is
application specific.

I However, we are rid of also this line if the
framework allows us to specify a
URL-to-method mapping, which most
frameworks do.

I One could also argue that the names of the
HTTP parameters are application specific.

I But, most frameworks enable specifying those
as method parameters in the URL-to-method-
mapping!

22 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Let’s Look for Infrastructure Code
I In store-entry, Util and
SessionManager there is no code at all
specific for this application!

I One could argue that the call to the
controller in store-entry.php is
application specific.

I However, we are rid of also this line if the
framework allows us to specify a
URL-to-method mapping, which most
frameworks do.

I One could also argue that the names of the
HTTP parameters are application specific.

I But, most frameworks enable specifying those
as method parameters in the URL-to-method-
mapping!

22 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Let’s Look for Infrastructure Code
I In store-entry, Util and
SessionManager there is no code at all
specific for this application!

I One could argue that the call to the
controller in store-entry.php is
application specific.

I However, we are rid of also this line if the
framework allows us to specify a
URL-to-method mapping, which most
frameworks do.

I One could also argue that the names of the
HTTP parameters are application specific.

I But, most frameworks enable specifying those
as method parameters in the URL-to-method-
mapping!

22 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Let’s Look for Infrastructure Code
I In store-entry, Util and
SessionManager there is no code at all
specific for this application!

I One could argue that the call to the
controller in store-entry.php is
application specific.

I However, we are rid of also this line if the
framework allows us to specify a
URL-to-method mapping, which most
frameworks do.

I One could also argue that the names of the
HTTP parameters are application specific.

I But, most frameworks enable specifying those
as method parameters in the URL-to-method-
mapping!

22 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

The Framework’s tasks
I Therefore, the framework must handle:

I Class loading, i.e., include PHP class files.

I Routing, which means to map a URL to a
specified method in a specified class.

I HTTP parameters, it should be possible to
specify how parameters are passed as
arguments to the methods specified by the
routing rules.

I HTTP sessions, all objects in controller and
lower layers should be stored in the
$_SESSION superglobal.

I Templating, to generate a view from data, we
need something to replace the PHP code
looping through the $conversation
variable.

23 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

The Framework’s tasks
I Therefore, the framework must handle:

I Class loading, i.e., include PHP class files.
I Routing, which means to map a URL to a

specified method in a specified class.

I HTTP parameters, it should be possible to
specify how parameters are passed as
arguments to the methods specified by the
routing rules.

I HTTP sessions, all objects in controller and
lower layers should be stored in the
$_SESSION superglobal.

I Templating, to generate a view from data, we
need something to replace the PHP code
looping through the $conversation
variable.

23 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

The Framework’s tasks
I Therefore, the framework must handle:

I Class loading, i.e., include PHP class files.
I Routing, which means to map a URL to a

specified method in a specified class.
I HTTP parameters, it should be possible to

specify how parameters are passed as
arguments to the methods specified by the
routing rules.

I HTTP sessions, all objects in controller and
lower layers should be stored in the
$_SESSION superglobal.

I Templating, to generate a view from data, we
need something to replace the PHP code
looping through the $conversation
variable.

23 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

The Framework’s tasks
I Therefore, the framework must handle:

I Class loading, i.e., include PHP class files.
I Routing, which means to map a URL to a

specified method in a specified class.
I HTTP parameters, it should be possible to

specify how parameters are passed as
arguments to the methods specified by the
routing rules.

I HTTP sessions, all objects in controller and
lower layers should be stored in the
$_SESSION superglobal.

I Templating, to generate a view from data, we
need something to replace the PHP code
looping through the $conversation
variable.

23 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

The Framework’s tasks
I Therefore, the framework must handle:

I Class loading, i.e., include PHP class files.
I Routing, which means to map a URL to a

specified method in a specified class.
I HTTP parameters, it should be possible to

specify how parameters are passed as
arguments to the methods specified by the
routing rules.

I HTTP sessions, all objects in controller and
lower layers should be stored in the
$_SESSION superglobal.

I Templating, to generate a view from data, we
need something to replace the PHP code
looping through the $conversation
variable.

23 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

The Framework’s tasks
I Therefore, the framework must handle:

I Class loading, i.e., include PHP class files.
I Routing, which means to map a URL to a

specified method in a specified class.
I HTTP parameters, it should be possible to

specify how parameters are passed as
arguments to the methods specified by the
routing rules.

I HTTP sessions, all objects in controller and
lower layers should be stored in the
$_SESSION superglobal.

I Templating, to generate a view from data, we
need something to replace the PHP code
looping through the $conversation
variable.

23 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

The Framework’s tasks, Cont’d
I The framework must handle:

I Composite views, there should be a
mechanism to specify fragments (header,
footer etc) for inclusion without having to mix
HTML and PHP.

I Not only should it be possible to reuse the
fragments, also the page layout should be
reused. This means only the content of the
main area should be specific for a page.

I There are many other requirements that
should be managed by a framework, but
which we have skipped in this small
example.

24 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

The Framework’s tasks, Cont’d
I The framework must handle:

I Composite views, there should be a
mechanism to specify fragments (header,
footer etc) for inclusion without having to mix
HTML and PHP.

I Not only should it be possible to reuse the
fragments, also the page layout should be
reused. This means only the content of the
main area should be specific for a page.

I There are many other requirements that
should be managed by a framework, but
which we have skipped in this small
example.

24 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

The Framework’s tasks, Cont’d
I The framework must handle:

I Composite views, there should be a
mechanism to specify fragments (header,
footer etc) for inclusion without having to mix
HTML and PHP.

I Not only should it be possible to reuse the
fragments, also the page layout should be
reused. This means only the content of the
main area should be specific for a page.

I There are many other requirements that
should be managed by a framework, but
which we have skipped in this small
example.

24 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

The Framework’s tasks, Cont’d
I The framework must handle:

I Composite views, there should be a
mechanism to specify fragments (header,
footer etc) for inclusion without having to mix
HTML and PHP.

I Not only should it be possible to reuse the
fragments, also the page layout should be
reused. This means only the content of the
main area should be specific for a page.

I There are many other requirements that
should be managed by a framework, but
which we have skipped in this small
example.

24 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Section

MVC in a PHP Web Application

The id1354-fw Framework

25 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

PHP Frameworks

I There are many PHP frameworks, of different size
and quality.

I Some interesting and often used frameworks are
Zend, Symfony, Yii, Laravel and Phalcon.

I Here, we will have a look at a framework written
specifically for this course, the id1354-fw framework.

26 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

PHP Frameworks

I There are many PHP frameworks, of different size
and quality.

I Some interesting and often used frameworks are
Zend, Symfony, Yii, Laravel and Phalcon.

I Here, we will have a look at a framework written
specifically for this course, the id1354-fw framework.

26 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

PHP Frameworks

I There are many PHP frameworks, of different size
and quality.

I Some interesting and often used frameworks are
Zend, Symfony, Yii, Laravel and Phalcon.

I Here, we will have a look at a framework written
specifically for this course, the id1354-fw framework.

26 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

The id1354-fw Framework
I But frameworks should be reused?? Why write a

new one?
I The most common frameworks are too complicated

for this course. Smaller frameworks are often
unstable, lack documentation, and solve wrong
problems.

I The id1354-fw framework is very small, but still has
exactly the features we are looking for (except
templating and composite views) and nothing more.
It will also be supported as long as it is used in the
course.

I Now, we will look at the id1354-fw framework and
how it changes the Chat application.

I The full documentation, including installation
instructions, is included in the id1354-fw.zip
file available at the course web.

27 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

The id1354-fw Framework
I But frameworks should be reused?? Why write a

new one?
I The most common frameworks are too complicated

for this course. Smaller frameworks are often
unstable, lack documentation, and solve wrong
problems.

I The id1354-fw framework is very small, but still has
exactly the features we are looking for (except
templating and composite views) and nothing more.
It will also be supported as long as it is used in the
course.

I Now, we will look at the id1354-fw framework and
how it changes the Chat application.

I The full documentation, including installation
instructions, is included in the id1354-fw.zip
file available at the course web.

27 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

The id1354-fw Framework
I But frameworks should be reused?? Why write a

new one?
I The most common frameworks are too complicated

for this course. Smaller frameworks are often
unstable, lack documentation, and solve wrong
problems.

I The id1354-fw framework is very small, but still has
exactly the features we are looking for (except
templating and composite views) and nothing more.
It will also be supported as long as it is used in the
course.

I Now, we will look at the id1354-fw framework and
how it changes the Chat application.

I The full documentation, including installation
instructions, is included in the id1354-fw.zip
file available at the course web.

27 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

The id1354-fw Framework
I But frameworks should be reused?? Why write a

new one?
I The most common frameworks are too complicated

for this course. Smaller frameworks are often
unstable, lack documentation, and solve wrong
problems.

I The id1354-fw framework is very small, but still has
exactly the features we are looking for (except
templating and composite views) and nothing more.
It will also be supported as long as it is used in the
course.

I Now, we will look at the id1354-fw framework and
how it changes the Chat application.

I The full documentation, including installation
instructions, is included in the id1354-fw.zip
file available at the course web.

27 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

The id1354-fw Framework
I But frameworks should be reused?? Why write a

new one?
I The most common frameworks are too complicated

for this course. Smaller frameworks are often
unstable, lack documentation, and solve wrong
problems.

I The id1354-fw framework is very small, but still has
exactly the features we are looking for (except
templating and composite views) and nothing more.
It will also be supported as long as it is used in the
course.

I Now, we will look at the id1354-fw framework and
how it changes the Chat application.

I The full documentation, including installation
instructions, is included in the id1354-fw.zip
file available at the course web.

27 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Class Loading
I You do not have to include or require

any classes, they are loaded by the
framework.

I Place all your classes under the classes
directory that is created when the
framework is installed.

I Use a directory structure matching the
namespaces and name each file after the
class in the file.

I For example, the class MyClass in the
namespace \MyApp\Model shall be in the
file
classes/MyApp/Model/MyClass.php.

28 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Class Loading
I You do not have to include or require

any classes, they are loaded by the
framework.

I Place all your classes under the classes
directory that is created when the
framework is installed.

I Use a directory structure matching the
namespaces and name each file after the
class in the file.

I For example, the class MyClass in the
namespace \MyApp\Model shall be in the
file
classes/MyApp/Model/MyClass.php.

28 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Class Loading
I You do not have to include or require

any classes, they are loaded by the
framework.

I Place all your classes under the classes
directory that is created when the
framework is installed.

I Use a directory structure matching the
namespaces and name each file after the
class in the file.

I For example, the class MyClass in the
namespace \MyApp\Model shall be in the
file
classes/MyApp/Model/MyClass.php.

28 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Class Loading
I You do not have to include or require

any classes, they are loaded by the
framework.

I Place all your classes under the classes
directory that is created when the
framework is installed.

I Use a directory structure matching the
namespaces and name each file after the
class in the file.

I For example, the class MyClass in the
namespace \MyApp\Model shall be in the
file
classes/MyApp/Model/MyClass.php.

28 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Routing

I To create a class that handles a HTTP
request, write a class that extends
\Id1354fw\View\AbstractRequestHandler.

I This class shall have the method
protected function doExecute(),

which performs all work needed to handle
the http request.

I If this class is called
\MyApp\View\Something,
the doExecute method is called when the
user requests the url
http://<yourserver>/<yourwebapp>/Myapp/View/Something.

29 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Routing

I To create a class that handles a HTTP
request, write a class that extends
\Id1354fw\View\AbstractRequestHandler.

I This class shall have the method
protected function doExecute(),

which performs all work needed to handle
the http request.

I If this class is called
\MyApp\View\Something,
the doExecute method is called when the
user requests the url
http://<yourserver>/<yourwebapp>/Myapp/View/Something.

29 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Routing

I To create a class that handles a HTTP
request, write a class that extends
\Id1354fw\View\AbstractRequestHandler.

I This class shall have the method
protected function doExecute(),

which performs all work needed to handle
the http request.

I If this class is called
\MyApp\View\Something,
the doExecute method is called when the
user requests the url
http://<yourserver>/<yourwebapp>/Myapp/View/Something.

29 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

HTTP Parameters

I The HTTP request handling class must
have a set method for each http post and
get parameter.

I If the parameter is called myParam, the
set method must be
public function setMyParam($value).

I This function will be called with the value of
the http parameter before the doExecute
method is called.

30 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

HTTP Parameters

I The HTTP request handling class must
have a set method for each http post and
get parameter.

I If the parameter is called myParam, the
set method must be
public function setMyParam($value).

I This function will be called with the value of
the http parameter before the doExecute
method is called.

30 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

HTTP Parameters

I The HTTP request handling class must
have a set method for each http post and
get parameter.

I If the parameter is called myParam, the
set method must be
public function setMyParam($value).

I This function will be called with the value of
the http parameter before the doExecute
method is called.

30 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Question 2

31 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Sessions

I The request handler contains the object
$this->session, which has the
following session handling methods.

I restart, starts a new session if there is
none. Changes session id if there is already a
session.

I invalidate, stops the session, discards all
session data, unsets the session id and
destroys the session cookie.

I set ,stores a key/value pair in the session.
I get, reads a value stored in the session.

32 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Sessions

I The request handler contains the object
$this->session, which has the
following session handling methods.

I restart, starts a new session if there is
none. Changes session id if there is already a
session.

I invalidate, stops the session, discards all
session data, unsets the session id and
destroys the session cookie.

I set ,stores a key/value pair in the session.
I get, reads a value stored in the session.

32 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Sessions

I The request handler contains the object
$this->session, which has the
following session handling methods.

I restart, starts a new session if there is
none. Changes session id if there is already a
session.

I invalidate, stops the session, discards all
session data, unsets the session id and
destroys the session cookie.

I set ,stores a key/value pair in the session.

I get, reads a value stored in the session.

32 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Sessions

I The request handler contains the object
$this->session, which has the
following session handling methods.

I restart, starts a new session if there is
none. Changes session id if there is already a
session.

I invalidate, stops the session, discards all
session data, unsets the session id and
destroys the session cookie.

I set ,stores a key/value pair in the session.
I get, reads a value stored in the session.

32 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Sessions

I The request handler contains the object
$this->session, which has the
following session handling methods.

I restart, starts a new session if there is
none. Changes session id if there is already a
session.

I invalidate, stops the session, discards all
session data, unsets the session id and
destroys the session cookie.

I set ,stores a key/value pair in the session.
I get, reads a value stored in the session.

32 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

View Handling

I To make available data in the next view, call
the method
addVariable($name, $value)
in the doExecute method.

I This will make the parameter $value
available in the next view, in a variable
called $name.

I The doExecute method shall return the
path to the file with the next view. views/
is prepended to the returned path and
.php is appended to the path.

33 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

View Handling

I To make available data in the next view, call
the method
addVariable($name, $value)
in the doExecute method.

I This will make the parameter $value
available in the next view, in a variable
called $name.

I The doExecute method shall return the
path to the file with the next view. views/
is prepended to the returned path and
.php is appended to the path.

33 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

View Handling

I To make available data in the next view, call
the method
addVariable($name, $value)
in the doExecute method.

I This will make the parameter $value
available in the next view, in a variable
called $name.

I The doExecute method shall return the
path to the file with the next view. views/
is prepended to the returned path and
.php is appended to the path.

33 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Question 3

34 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Composite Views and Templates

I Unfortunately, composite views and
templates are not handled by the id1354-fw
framework.

I Therefore, we still have to mix PHP in the
HTML code to include data and fragments
in the view.

35 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Composite Views and Templates

I Unfortunately, composite views and
templates are not handled by the id1354-fw
framework.

I Therefore, we still have to mix PHP in the
HTML code to include data and fragments
in the view.

35 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Mission Completed (Almost)

I Now compare the chat application with and
without the framework. With the framework,
there is no infrastructure code!!

I Adding more functionality involves only new
implementations of
AbstractRequestHandler, and
ordinary object-oriented code in controller
and lower layers.

I All this is application specific!
I But there is still PHP in the HTML code...

36 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Mission Completed (Almost)

I Now compare the chat application with and
without the framework. With the framework,
there is no infrastructure code!!

I Adding more functionality involves only new
implementations of
AbstractRequestHandler, and
ordinary object-oriented code in controller
and lower layers.

I All this is application specific!

I But there is still PHP in the HTML code...

36 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Mission Completed (Almost)

I Now compare the chat application with and
without the framework. With the framework,
there is no infrastructure code!!

I Adding more functionality involves only new
implementations of
AbstractRequestHandler, and
ordinary object-oriented code in controller
and lower layers.

I All this is application specific!
I But there is still PHP in the HTML code...

36 / 36

Architecture

MVC in a PHP Web
Application

The id1354-fw
Framework

Mission Completed (Almost)

I Now compare the chat application with and
without the framework. With the framework,
there is no infrastructure code!!

I Adding more functionality involves only new
implementations of
AbstractRequestHandler, and
ordinary object-oriented code in controller
and lower layers.

I All this is application specific!
I But there is still PHP in the HTML code...

36 / 36

	MVC in a PHP Web Application
	The id1354-fw Framework

