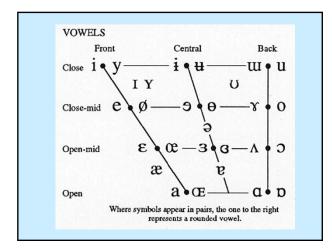
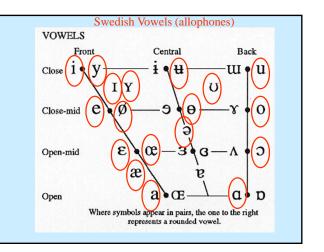


Basic units of speech

- Phonemes
 - Vowels
 - Consonants
- Prosody
 - Intonation (melody)
 - Rhythm (duration)
 - Intensity

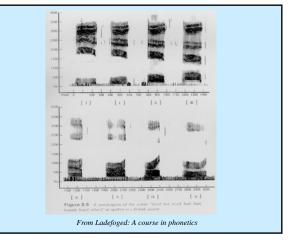


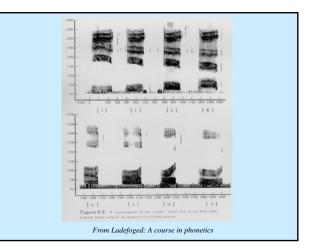


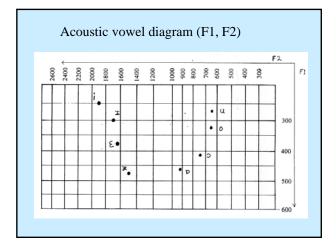

Vowel articulation

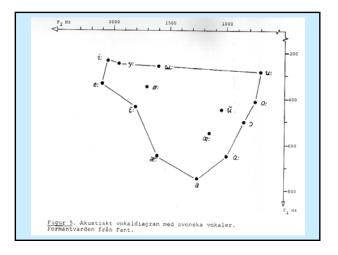
Cardinal vowels

- Reference vowels
- Four corner vowels form the corners of the vowel chart
- Descriptive terminology
 - Close-open (high-low)
 - Front-back
 - Unrounded-rounded
 - Oral-nasal (e.g. French)
- sluten-öppen främre-bakre orundad-rundad oral-nasal



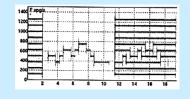

Vowel acoustics


- Speech spectrogram
- Formants (F1, F2, F3, F4)
- Acoustic vowel diagram (F1, F2)



Formant transitions

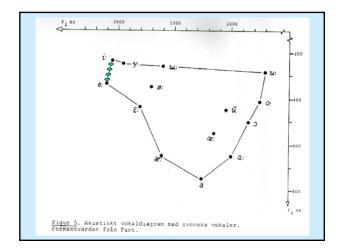
- Articulators move towards upcoming phonemes before reaching target: coarticulation
- Coarticulation causes formants to shift in frequency creating overlapping information
- Critical concept for speech perception

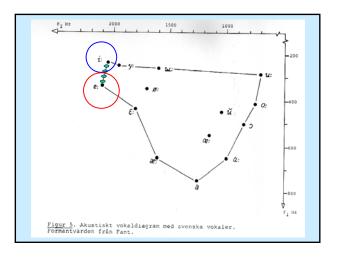


Holistic vs. analytic listening

4

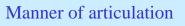
- Demo 1: audible harmonics (1-5)
- Demo 2: melody with harmonics
- Demo 3: vowels and audible formants


Perception of vowels


- Formants (general relationship acousticsarticulation)
 - F1: information on jaw openinghigher F1= more open
 - F2: information on front-back
 - higher F2=more front
 F3: information on lip rounding
 - lower F3=more rounded

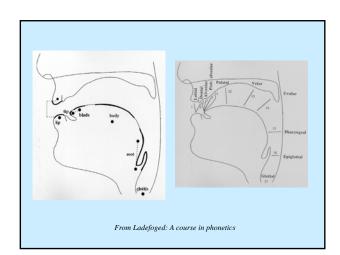
Perception of vowels

- Identification – Perceive which vowel is pronounced
- Discrimination
 - Hear that two vowel sounds are different
- Categorical perception
 - Difficult to discriminate within a category
 - Easy to discriminate between categories


Figur 5. Akustiskt vokaldiagram med svenska vokaler.

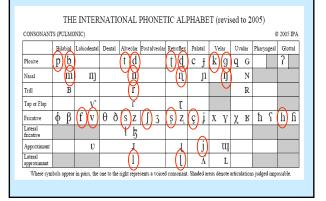
Consonant articulation

- · Voiceless or voiced
- Manner of articulation - How is the sound produced?
- Place of articulation
 - Where is the constriction or closure located?

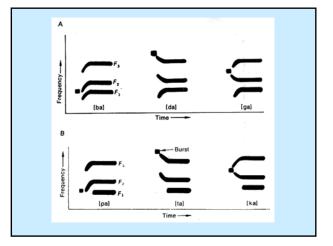


• Fricatives

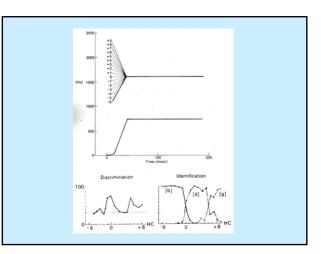
- f, v, s, z, h
- Stops, plosives - p, b, t, d, k,
- Liquids – r, l
- Nasals – n, m
- frikativor (spiranter)
- klusiler, explosivor
 - likvidor
 - nasaler

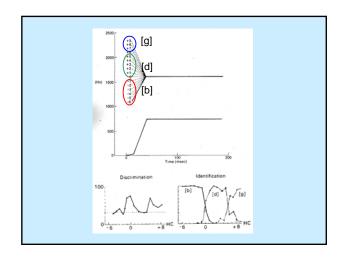

Place of articulation (IPA)

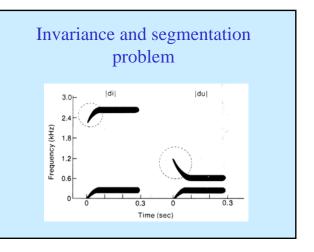
- Bilabial
- Labiodental
- Dental
- Alveolar Postalveolar
- PostalveolarRetroflex
- Retron
 Palatal
- PalatalVelar
- VeralUvular
- Pharyngeal
- Glottal (laryngeal)


		ти	e in	TED	NATIO	ONAL	PHONET	TC	ATI	บบ/	DE	т (oui	- he	to ?	005)			
CONSONANT				TER	10/4110	JINAL	FIIONEI	IC.	AL.	F112	UDL	1 (1	evi	seu	10 2	.005)		200	5 TD
CONSONAINI	Bilabial Labiodental			Dental	Alveolar	Postalveolar	Retrofley		Palatal		Velar		Uvular		Phary				
Plosive	p	b	Laon	ocana.	Demai	t d	i ostaliteolai	t	d	C	Ŧ	k	g	q	G	1 101 9	ligeor	2	- Cul
Nasal	r	m		ŋ		n		l	η		ŋ		1)	1	N		-		-
Trill		В		5		r					0				R				-
Tap or Flap				V		ſ			t										
Fricative	φ	β	f	V	θð	S Z	∫ 3	ş	Z	ç	j	Х	Y	χ	R	ħ	ſ	h	ſ
Lateral fricative						1 3													
Approximant				υ		T			ŀ		j		щ						
Lateral approximant						1			1		λ		L						

SWEDISH CONSONANTS


Perception of stops


- Frequency of the burst release – Provides information on place of articulation
- Formant transitions in adjoining vowels
 - Also information on place of articulation
- Voicing during occlusion and burst
 - Provides information on manner of articulation



Perception of stops

- Early experiments with speech synthesis – Formant transitions alone were sufficient to
 - identify place of articulation (ba-da-ga)
 - Identification and discrimination of stops
- Categorical perception of stops
 - Difficult to discriminate within a category
 - Easy to discriminate between categories

Invariance and segmentation problem

- The same phoneme has different cues in different contexts, e.g. F2-transitions for [di] [du].
- Where are the segment boundaries?
- Problem is a result of coarticulation
- Problem has inspired the classic perception theories

Classic theories of speech perception

- Invariance theory
- The acoustic signal is the most important (invariant)
- Motor theory
 - Speaker's nerve impulses for speech motor control are calculated by the brain by analysing the acoustic signal.
 - Activation of motor mechanisms is the most important

4

Cognitive theories

- · Top-down speech processing
 - Expectation and linguistic knowledge set the frame
 - Incoming words are compared to hypotheses
- Bottom-up processing
 - Acoustic signal is transformed to words
 - Message formed from words

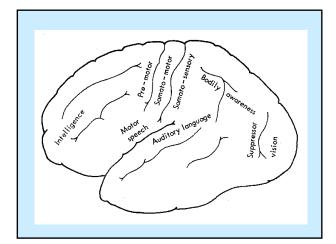
Psycholinguistics

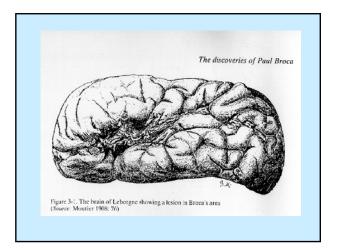
- The mental lexicon
- "Top-down" perception and context
 - experiments with phoneme detection (e.g. [s])
 - "They had been up all night and needed to sleep"
 - "They didn't know if they would be able to sleep"
 - experiments with filtered speech

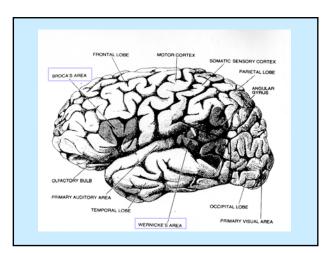
Demo: Low-pass filtered speech (speech below 300 Hz) 🛶

Original recording

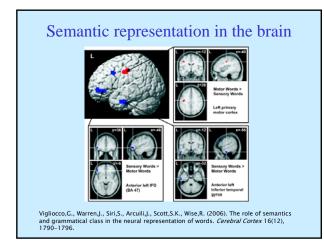
Speech acquisition theories

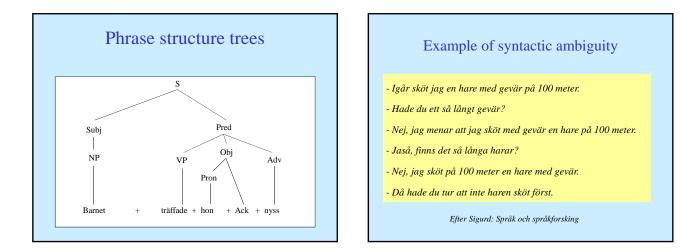

- Innate
 - Possible psychophysical limits
 - e.g. the number of vowels that can be discriminated
- Acquired
 - Language-specific categories
 - Several high, front vowels in Swedish: language categories develop making use of psychophysical limits
 - One high front vowel in Japanese: category differences are lost


Some of the main functions of language and speech


- Informative (provide information)
- Interrogative (obtain information)
- Influence (make someone perform an action)
- Social (make contact)
- Expressive (express feelings)
- Speaker-specific information (gender, age, background, identity)

Language and the brain

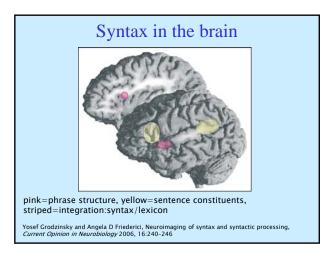

- Neurolinguistics
 - Language lateralization to the left hemisphere
 - Aphasia
 - Paul Broca, 1861
 - Carl Wernicke, 1874



Semantic representation in the brain **Semantics** • The linguistic sign (word) Ferdinand de Saussure • PET-study (Positron Emission Arbitrary union between sound and meaning (e.g. hund, dog, chien) Tomography) But there are onomatopoetic words (sound imitation: e.g. whisper, mumble, susa, mumla) - Cerebral blood flow • Subjects listened to words (Italian) • Homonyms Two signs have the same form (e.g. vad-vad, bear-bear-- Motor words (e.g. dive, skate) bear) - Sensory words (e.g. darkness, shine) • Lexicon Semantic features (e.g. häst-sto-hingst, horse-mare-stallion) • Used both nouns and verbs - Language dependent categories (e.g. tak, roof-ceiling)

Syntax and grammar

- Grammatical analysis
 - Word class (e.g. noun, verb, adverb)
 - function (e.g. subject, object)
- Position analysis
- Phrase structure rules (Noam Chomsky)
- Parsing (phrase structure analysis)
- Generative grammar



Example of syntactic ambiguity

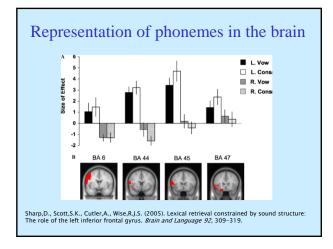
- Do you want to see my synthetic cow hide?
- I didn't know you had a synthetic cow.
- No, I mean do you want to see the cow hide.
- Oh, is she so shy?
- No, I mean a synthetic cow hide.
- Yes, I know, but what happened to the real one?

Syntax in the brain

- · Studies of aphasia
 - What kinds of linguistic problems do patients display? (e.g. problems with passive construction)
- fMRI-study (functional magnetic resonance imaging)
 - Subjects are asked to interpret complex syntactic structures

Phonology

- · Phoneme: The smallest distinctive unit of sound e.g. /b/ /p/ in Swedish (bil pil) – allophones: variants of a phoneme (t.ex. /r/ > [r], [R])


 - minimal pairs (bil/pil, par/bar)
 - commutation test (used to define phonemes in a language)
 - r/I/I are two phonemes in Swedish and English but not in Japanese
- Distinctive features (e.g. voicing)
- Phonotactic structures (e.g. pferd, stone)
- · Syllable structure

Vowels and consonants

- Speech production (phonetics)
 - Free air passage through the pharynx, mouth and the lips = vowel
 - Constricted or closed air passage = consonant
- Function (phonology)
 - Nuclear in the syllable = vowel
 - Marginal in the syllable = consonant
- Exceptions
 - Some voiced consonants (e.g. syllablic nasal)
 Approximants or semi-vowels (e.g. [j] [w])
- Information
 - Consonants carry more information than vowels

Representation of phonemes in the brain

- PET-study (Positron Emission Tomography)
 - Cerebral blood flow
- Subjects had to reconstruct words
 - Real words (repeat the word)
 - Non-word (wrong vowel, say the real word)
 - Non-word (wrong consonant, say the real word)
- Left hemisphere (Words with wrong consonants produced more brain activity)

Prosody

- Functions of prosody
 - Lend prominence (emphasize, de-emphasize)
 - Grouping function (combine, separate)
 - Facilitate dialogue: turntaking and feedback
- Signal attitude and emotion
- Word prosody
 - quantity, intensity (stress), accent
- Phrase prosody
 - Focus, emphasis, intonation

Prosody in the brain

- Prosody lateralized to the right hemisphere?
- Studies of aphasia
 - Lesions or injuries to the right hemiphere can result in deviant prosody
- fMRI-study
 - Subjects listened to emotional speech
 - Complex prosodic stimuli seem to activate several areas in the brain (not exclusively right hemisphere)

Sonja A. Kotz, Martin Meyer, Kai Alter, Mireille Besson D., Yves von Cramon, and Angela D. Friederici. On the lateralization of emotional prosody: An event-related functional MR investigation. Brain and Language 86 (2003) 366-376

Brain synchrony in dialogue

- Speakers' and listeners' brains sync up during communication
- 68 (p.156) in "100 things every designer needs to know about people".

Lab exercises

- 13.2 McGurk Effect – Audiovisual speech
- 13.4 Phonemic restoration
- 13.7 Speech reconstruction
 - Sound stimulus reconstructed from brain signals

References

- Caplan, David (1987) *Neurolinguistics and linguistic aphasiology*. Cambridge University Press, Cambridge.
- Elert, Claes-Christian (1995) Allmän och svensk fonetik. Norstedts Förlag, Stockholm
- Engstrand, Olle (2004) *Fonetikens grunder*. Studentlitteratur, Lund
- Laver, John (1994) *Principles of phonetics*. Cambridge University Press, Cambridge
- Sigurd, Bengt (1991) Språk och språkforskning. Studentlitteratur, Lund