Principles of Wireless Sensor Networks

https://www.kth.se/social/course/EL2745/

Lecture 10 Positioning and Localization

Piergiuseppe Di Marco

Ericsson Research e-mail:pidm@kth.se http://pidm.droppages.com/

Royal Institute of Technology Stockholm, Sweden

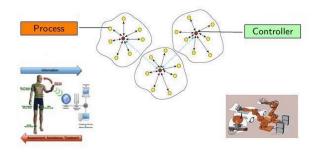
September 24, 2015

Principles of Wireless Sensor Networks

Course content

- Part 1
 - ► Lec 1: Introduction to WSNs
 - Lec 2: Introduction to Programming WSNs
- Part 2
 - ► Lec 3: Wireless Channel
 - Lec 4: Physical Layer
 - Lec 5: Medium Access Control Layer
 - Lec 6: Routing
- Part 3
 - ► Lec 7: Distributed Detection
 - Lec 8: Static Distributed Estimation
 - Lec 9: Dynamic Distributed Estimation
 - Lec 10: Positioning and Localization
 - Lec 11: Time Synchronization
- Part 4
 - Lec 12: Wireless Sensor Network Control Systems 1
 - Lec 13: Wireless Sensor Network Control Systems 2

Previous lecture



How to estimate phenomena from noisy measurements?

Today's learning goals

- Which measurements are used for estimating the position of a node?
- How to estimate the position of a node?
- What is the effect of measurement errors?

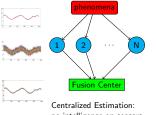
- Introduction
- Specific sources of measurements
- Estimation of the position

Introduction

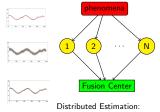
- Specific sources of measurements
 - Time of arrival
 - ► Time difference of arrival
 - Received signal strength
 - Angle of Arrival

- Estimation of the position
 - ► Angle of arrival + velocity
 - Triangulation
 - Trilateration
 - Iterative and collaborative multilateration

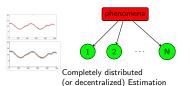
Estimation



no intelligence on sensors



some intelligence on sensors



Positioning and localization

Localization is defined as a technique to estimate the positions of nodes

- It can be categorized into
 - Centralized, where a central node estimates the position of the nodes
 - Distributed, where many nodes help each other to find their own positions

Introduction

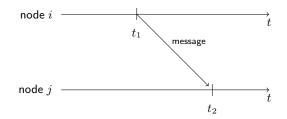
• Specific sources of measurements

Time of arrival

- ► Time difference of arrival
- Received signal strength
- Angle of Arrival

- Estimation of the position
 - ► Angle of arrival + velocity
 - Triangulation
 - Trilateration
 - Iterative and collaborative multilateration

Time of arrival



• Assuming that the nodes are synchronized the distance measurement is

$$d_{ij} \simeq (t_2 - t_1) \cdot v$$

where v is the propagation speed of the message

- Uncertainty occurs when $t_2 \approx t_1$
- Problems
 - Packet losses
 - MAC delays
 - CPU delay

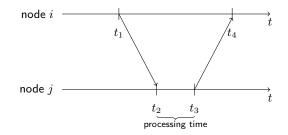
Introduction

• Specific sources of measurements

- Time of arrival
- ► Time difference of arrival
- Received signal strength
- Angle of Arrival

- Estimation of the position
 - ► Angle of arrival + velocity
 - Triangulation
 - Trilateration
 - Iterative and collaborative multilateration

Time difference of arrival



• The distance measurement is

$$d_{ij} \simeq \frac{(t_2 - t_1) + (t_4 - t_3)}{2} \cdot v$$

where \boldsymbol{v} is the propagation speed of the message

- Problems
 - Packet losses
 - MAC delays
 - CPU delay

Introduction

• Specific sources of measurements

- ► Time of arrival
- Time difference of arrival
- Received signal strength
- Angle of Arrival

- Estimation of the position
 - ► Angle of arrival + velocity
 - Triangulation
 - Trilateration
 - Iterative and collaborative multilateration

Received signal strength (RSS)

Ideal propagation

$$P_r = P_t G_t G_r \overline{\mathrm{PL}} \frac{\lambda^2}{(4\pi d_{ij})^2} \Rightarrow d_{ij} \simeq \frac{\lambda}{4\pi} \sqrt{\frac{P_t G_t G_r \overline{\mathrm{PL}}}{P_r}}$$

Problems: multi-path, noise, etc, affect the propagation characteristics \Rightarrow Channel estimation needed

Introduction

• Specific sources of measurements

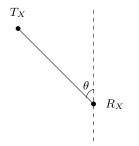
- Time of arrival
- Time difference of arrival
- Received signal strength
- Angle of Arrival

- Estimation of the position
 - ► Angle of arrival + velocity
 - Triangulation
 - Trilateration
 - Iterative and collaborative multilateration

Angle of arrival

Example: Sound propagation by multiple microphones, amplitude and phase

Odometry sensor



Problems: Errors in measurements of θ (e.g., due to magnetic fields of earth), estimation accuracy decreases with the distance.

Introduction

- Specific sources of measurements
 - Time of arrival
 - ► Time difference of arrival
 - Received signal strength
 - Angle of Arrival

• Estimation of the position

- ► Angle of arrival + velocity
- Triangulation
- Trilateration
- Iterative and collaborative multilateration

Estimation of the position

We now examine the specific techniques that are used to estimate the sensors' position based on the measurements that were previously presented

Introduction

- Specific sources of measurements
 - Time of arrival
 - ► Time difference of arrival
 - Received signal strength
 - Angle of Arrival

• Estimation of the position

- Angle of arrival + velocity
- Triangulation
- Trilateration
- Iterative and collaborative multilateration

Angle of arrival + velocity

$$\widetilde{\theta}(k) = \theta(k) + n_{\theta}(k)$$

- $\widetilde{ heta}\left(k
 ight)$ the angle measurement at discrete time k given by, e.g., odometry sensor
- $\theta\left(k
 ight)$ the real angle value
- $n_{\theta}(k)$ the additive noise

 $\widetilde{v}(k) = v(k) + n_v(k)$

- $\widetilde{v}\left(k
 ight)$ the velocity measurement at discrete time k given by, e.g., accelerometer
- v(k) the real velocity value
- $n_{v}\left(k
 ight)$ the additive noise

Angle of arrival + velocity

Node moving $\bullet \longrightarrow v$ with velocity $v \qquad v$

Let $X_r(k) = \begin{bmatrix} x(k) \\ y(k) \end{bmatrix}$ be the true position of the node that we want to estimate Then

$$\widehat{x} (k+1) = \widehat{x} (k) + \widetilde{v} (k) \cdot T \cdot \cos \widetilde{\theta} (k)$$
$$\widehat{y} (k+1) = \widehat{y} (k) + \widetilde{v} (k) \cdot T \cdot \sin \widetilde{\theta} (k)$$

where T is the sampling time

A problem is that the resulting estimator is biased

$$\mathbb{E}\left\{\widehat{x}\left(k+1\right)\right\} = \mathbb{E}\left\{\widehat{x}\left(k\right)\right\} + \mathbb{E}\left\{\widetilde{v}\left(k\right)\right\} \cdot T \cdot \mathbb{E}\left\{\cos\widetilde{\theta}\left(k\right)\right\} = \\ = \mathbb{E}\left\{\widehat{x}\left(k\right)\right\} + v\left(k\right) \cdot T \cdot \cos\theta\left(k\right) \cdot e^{-\frac{\sigma_{\theta}^{2}}{2}} \neq x\left(k+1\right)$$

We need to estimate the bias as well.

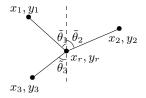
Introduction

- Specific sources of measurements
 - Time of arrival
 - ► Time difference of arrival
 - Received signal strength
 - Angle of Arrival

• Estimation of the position

- ► Angle of arrival + velocity
- Triangulation
- Trilateration
- Iterative and collaborative multilateration

 Anchors: nodes with fixed position used for determining the unknown position of a node



Let
$$X_r = \begin{bmatrix} x_r \\ y_r \end{bmatrix}$$
 be the true position of the node that we want to estimate

The angle measurements are

$$\widetilde{\theta}_i = \theta_i \left(X_r \right) + n_i \qquad i = 1, 2, 3$$

where $\theta_i(X_r) = \arctan \frac{x_r - x_i}{y_r - y_i}$

Setting

•
$$\underline{n} = \begin{bmatrix} n_1 \\ n_2 \\ n_3 \end{bmatrix}$$
 as the vector of noises with $\mathbb{E} \{ n \cdot n^T \} = R = \begin{bmatrix} \sigma_1^2 & 0 & 0 \\ 0 & \sigma_2^2 & 0 \\ 0 & 0 & \sigma_3^2 \end{bmatrix}$
• $\theta(X_r) = \begin{bmatrix} \theta_1(X_r) \\ \theta_2(X_r) \\ \theta_3(X_r) \end{bmatrix}$ as the vector of true node position and
• $Y = \begin{bmatrix} \tilde{\theta}_1 \\ \tilde{\theta}_2 \\ \tilde{\theta}_3 \end{bmatrix}$ as the vector of angle measurements

we can estimate X_r from

 $Y = \theta\left(X_r\right) + \underline{n}$

where $\theta(X_r)$ is a non-linear function

Error covariance (cf. slide 19 in Lecture 8)

$$C\left(\widehat{X}_{r}\right) = \left[\theta\left(\widehat{X}_{r}\right) - Y\right]^{T} \cdot R^{-1} \cdot \left[\theta\left(\widehat{X}_{r}\right) - Y\right] = \sum_{i=1}^{3} \frac{\left(\theta_{i}\left(\widehat{X}_{r}\right) - \widetilde{\theta}_{i}\right)^{2}}{\sigma_{i}^{2}}$$

Goal: Choose \widehat{X}_r that keeps oscillations of $\theta\left(\widehat{X}_r\right)$ around Y

Therefore

$$\min_{\widehat{X}_r} C\left(\widehat{X}_r\right) \equiv \left\{ \begin{array}{l} \frac{dC\left(\widehat{X}_r\right)}{dx_r} = 0\\ \frac{dC\left(\widehat{X}_r\right)}{dy_r} = 0 \end{array} \right\}$$

We can use iterative methods for solving the above system of non-linear equations, e.g.,

Newton-Gauss method

Consider the non-linear equation

$$g(x) = 0$$
 $g: \mathbb{R}^N \to \mathbb{R}^N$ $x \in \mathbb{R}^N$

Iterative method

$$x_{t+1} = x_t - \delta_t \cdot g\left(x_t\right)$$

where

$$\delta_t = \nabla^{-1} g\left(x_t\right)$$

$$\lim_{t \to \infty} x_t \to x^* : g\left(x^*\right) = 0$$

abla is the matrix of all first-order partial derivatives (Jacobian)

In this specific case, we use the iterative method to solve

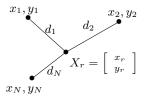
$$g\left(x\right) = \nabla_x C\left(\widehat{X}_r\right) = 0$$

Introduction

- Specific sources of measurements
 - Time of arrival
 - ► Time difference of arrival
 - Received signal strength
 - Angle of Arrival

• Estimation of the position

- ► Angle of arrival + velocity
- Triangulation
- Trilateration
- Iterative and collaborative multilateration



Let $X_r = \begin{bmatrix} x_r \\ y_r \end{bmatrix}$ be the true position of the node that we want to estimate

The distance measurements are

$$\widetilde{d}_i = d_i + n_i \qquad i = 1, .., N$$

From the trigonometry

$$(x_1 - x_r)^2 + (y_1 - y_r)^2 = \tilde{d}_1^2$$

 \vdots
 $(x_N - x_r)^2 + (y_N - y_r)^2 = \tilde{d}_N^2$

After substracting these ${\it N}$ equations we arrive at the following system of equations

$$A \cdot X_r = Y$$
where $A \in \mathbb{R}^{(N-1)\times 2}, \quad X_r \in \mathbb{R}^2, \quad Y \in \mathbb{R}^{(N-1)\times 1}$

$$A = 2 \cdot \begin{bmatrix} (x_N - x_1) & (y_N - y_1) \\ \vdots & \vdots \\ (x_N - x_{N-1}) & (y_N - y_{N-1}) \end{bmatrix}$$

$$Y = \begin{bmatrix} \tilde{d}_1^2 - \tilde{d}_N^2 - x_1^2 - y_1^2 + x_N^2 + y_N^2 \\ \vdots \\ \tilde{d}_{N-1}^2 - \tilde{d}_N^2 - x_{N-1}^2 - y_{N-1}^2 + x_N^2 + y_N^2 \end{bmatrix}$$

From the previous lecture we considered a measurements model $\boldsymbol{Y}=\boldsymbol{H}\boldsymbol{X}+\boldsymbol{n},$ but we now have

$$Y = AX_r$$

A is not a square matrix and there is no explicit noise (all is included in $Y). \ X_r$ is constant

We can apply the Linear Minimum Mean Squared Estimator (LMMSE) with

$$\widehat{X}_r = L \cdot Y$$

where

$$L = \left(A^T A\right)^{-1} A^T$$

We can redefine \widehat{X}_r as a **least square** solution.

This is equivalent to define the following cost function

$$C(X_r) = (AX_r - Y)^T (AX_r - Y)$$

and search for X_r that minimizes $C(X_r)$

$$\frac{dC(X_r)}{dX_r} = 2A^T \left(A\hat{X}_r - Y \right) = 0 \Rightarrow A^T A\hat{X}_r = A^T Y \Rightarrow \left[\hat{X}_r = \left(A^T A \right)^{-1} A^T Y \right]$$

Note that \widehat{X}_r is a random variable due to Y being noisy Taking the expected values,

$$\begin{split} \mathbb{E}\left\{\hat{X}_{r}\right\} &= \left(A^{T}A\right)^{-1}A^{T}\mathbb{E}\left\{Y\right\}\\ \mathbb{E}\left\{Y\right\} &= \begin{bmatrix} \mathbb{E}\left\{\tilde{d}_{1}^{2}\right\} - \mathbb{E}\left\{\tilde{d}_{N}^{2}\right\} - x_{1}^{2} - y_{1}^{2} + x_{N}^{2} + y_{N}^{2} \\ &\vdots \\ \mathbb{E}\left\{\tilde{d}_{N-1}^{2}\right\} - \mathbb{E}\left\{\tilde{d}_{N}^{2}\right\} - x_{N-1}^{2} - y_{N-1}^{2} + x_{N}^{2} + y_{N}^{2} \end{bmatrix}\\ \tilde{d}_{i} &= d_{i} + n_{i} \Rightarrow \tilde{d}_{i}^{2} = d_{i}^{2} + n_{i}^{2} + 2d_{i}n_{i} \Rightarrow E\left\{\tilde{d}_{i}^{2}\right\} = d_{i}^{2} + E\left\{n_{i}^{2}\right\} = d_{i}^{2} + \sigma_{i}^{2} \\ \text{where } \sigma_{i}^{2} = \sigma_{0}^{2}e^{k_{\sigma}d_{i}} \end{split}$$

The result is that \widehat{X}_r is a biased estimator since

$$\mathbb{E}\left\{\hat{X}_{r}\right\} = \left(A^{T}A\right)^{-1}A^{T}\mathbb{E}\left\{Y\right\} \neq X_{r}$$

Introduction

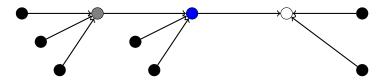
- Specific sources of measurements
 - Time of arrival
 - ► Time difference of arrival
 - Received signal strength
 - Angle of Arrival

• Estimation of the position

- ► Angle of arrival + velocity
- Triangulation
- Trilateration
- Iterative and collaborative multilateration

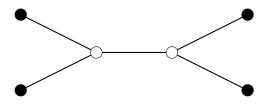
Iterative and collaborative multilateration

- In lateration techniques, at least three anchor nodes are required for estimating position
- Iterative and collaborative multilateration are extension of lateration that do not require three neighbouring anchors
- In iterative multilateration
 - Any node can become anchor after estimating its position and send anchor messages on the network
 - In this way, all nodes can estimate their positions after several iterations
- For example, in the figure below
 - Gray node estimates its position by three black anchors
 - Blue node estimates by gray and two black anchor nodes
 - White node is localized by blue and two black anchor nodes



Iterative and collaborative multilateration

- It is possible that nodes cannot have three anchors even after several iterations
- In that case collaborative multilateration is used in which
 - A graph of participating nodes is constructed
 - Participating nodes are the ones that are either anchors or have at least three participating neighbours
 - This gives set of over-constrained quadratic equations relating distance among nodes and their neighbours
 - These equation are solved to estimate positions



Summary

- We have studied the basic of localization for sensor networks
- Localizing the nodes consists in applying estimation techniques

Next lecture

• Application of estimation and detection to synchronization