
Watts-Strogatz Model

• Regular graph with degree k connected to nearest neighbors

• Can be also a grid, torus, or any other “geographical” structure 
which has high clusterisation and high diameter

• With probability p rewire each edge in the network to a random 
node.
– Q: What happens when p=1?



Watts-Strogatz Model (cont.)
• When p=1 we have ~Erdos-Renyi network

• There is a range of p values where the network 
exhibits properties of both: random and regular 
graphs:

• High clusterisation;

• Short path length.





Demo Small Worlds

• http://ccl.northwestern.edu/netlogo/models/
SmallWorlds

http://ccl.northwestern.edu/netlogo/models/SmallWorlds


Small Worlds and Real Networks

• More realistic than Erdos-Renyi
– Low path length

– High clusterisation

• What other properties of real world networks 
are missing?

• Degree distribution
– Watts-Strogatz model might be good for certain 

applications (e.g., P2P networks) 

– But can not model real world networks where degree 
distributions are usually power law.



Preferential attachment Model

• Start with Two connected nodes
– Add a new node v 
– Create a link between v and one of the existing nodes with probability 

proportional to the degree of the that node
• P(u,v) = d(u)/Total_network_degree

• Rich get richer phenomenon!
• Exhibits power-law distributions
• Can be extended to m links (Barabasi-Albert model)

– Start with connected network of m0 nodes
– Each new node connects to m nodes (m  m0) with aforedescribed

pref. attachment principle.

• http://ccl.northwestern.edu/netlogo/models/PreferentialAttachme
nt

http://ccl.northwestern.edu/netlogo/models/PreferentialAttachment


Recap: Network properties

• Each network is unique “microscopically”, but 
in large scale networks one can observe 
macroscopic properties:

– Diameter (six-degrees of separation);

– Clustering coefficient (triangles, friends-of-friends 
are also friends);

– Degree distribution (are there many “hubs” in the 
network?);



Expanders

• Expanders are graphs with very strong connectivity 
properties.
– sparse yet very well-connected

• Example
– N nodes, E edges N=E
– Does this graph have
good connectivity properties?
– 2 edges fail -> 
isolates up to N/2 nodes

Can one isolate large number of nodes by removing small 
number of edges?



Expansion

• Expansion α: 

• How robust are your 
graphs?

• To isolate k nodes 
one needs to 
remove at least α*k
edges



Examples

• Which networks do you think have good 
expansion (random graph, tree, grid)?



Properties of Expander Graphs

• A graph is an expander if the number of edges 
originating from every subset of vertices is larger than 
the number of vertices at least by a constant factor 
(more than 1).
• Sparse yet very well-connected (no small cuts, no bottlenecks)

• Small second eigenvalue λ2(we will talk about it later)

• Rapid convergence of random walk

• For all practical reasons, random walk of TTL = 
O(logN) on an expander graph with fixed node 
degree gives an uniform random node from the 
population



Random Walks

• Let G(V,E) be 
connected graph.

• Consider random 
walk on G from 
node v. 
– We move to a 

neighboring node 
with probability 
1/d(v)

– The sequence of 
random walks is 
Markov chain



Random Walks
Time
0 1 0 0 0 0

1 0.00 0.50 0.50 0.00 0.00

2 0.42 0.00 0.00 0.42 0.17

3 0.00 0.35 0.43 0.08 0.14

4 0.32 0.03 0.10 0.39 0.17

5 0.05 0.29 0.37 0.13 0.16

6 0.27 0.07 0.15 0.35 0.17

7 0.08 0.25 0.33 0.17 0.17

8 0.24 0.10 0.18 0.32 0.17

9 0.11 0.22 0.31 0.19 0.17

10 0.22 0.12 0.20 0.30 0.17

11 0.13 0.21 0.29 0.21 0.17

12 0.20 0.13 0.22 0.28 0.17

• The initial node 
can be fixed, but 
also can be drawn 
from some initial 
distribution P0



Convergence

• For any connected 
non-bipartite 
bidirectional graph, 
and any starting 
point, the random 
walk converges

– Converges to 
unique stationary 
distribution 

– Power Iteration

t 1 0 0 0 0

1 0.00 0.50 0.50 0.00 0.00

2 0.42 0.00 0.00 0.42 0.17

3 0.00 0.35 0.43 0.08 0.14

4 0.32 0.03 0.10 0.39 0.17

5 0.05 0.29 0.37 0.13 0.16

6 0.27 0.07 0.15 0.35 0.17

7 0.08 0.25 0.33 0.17 0.17

8 0.24 0.10 0.18 0.32 0.17

9 0.11 0.22 0.31 0.19 0.17

10 0.22 0.12 0.20 0.30 0.17

11 0.13 0.21 0.29 0.21 0.17

12 0.20 0.13 0.22 0.28 0.17

13 0.14 0.19 0.28 0.22 0.17

14 0.19 0.14 0.23 0.27 0.17

15 0.15 0.19 0.27 0.23 0.17

16 0.18 0.15 0.23 0.27 0.17

17 0.15 0.18 0.26 0.24 0.17

18 0.18 0.16 0.24 0.26 0.17

19 0.16 0.18 0.26 0.24 0.17

20 0.17 0.16 0.24 0.26 0.17

21 0.16 0.17 0.26 0.24 0.17

22 0.17 0.16 0.24 0.26 0.17

23 0.16 0.17 0.25 0.25 0.17

24 0.17 0.16 0.25 0.25 0.17

25 0.16 0.17 0.25 0.25 0.17

26 0.17 0.16 0.25 0.25 0.17

27 0.16 0.17 0.25 0.25 0.17

28 0.17 0.16 0.25 0.25 0.17

29 0.17 0.17 0.25 0.25 0.17

30 0.17 0.17 0.25 0.25 0.17



Stationary Distribution
• Which distribution does the random walk converge in our 

graph?

• Random walk converges to the stationary distribution:
π(v) = d(v)/2m

– d(v) = degree of v, i.e. # of neighbors.
– m: |E|, i.e. # of edges.
– If Graph d-regular then to uniform distribution

π’(v) = u: (u,v)∊E π(u)
1

d(u)

= u: (u,v)∊E
d(u)
2m

∙
1

d(u)

= u: (u,v)∊E
1

2m

= 
d(v)
2m
= π(v)

π 0.17 0.17 0.25 0.25 0.17
π' 0.17 0.17 0.25 0.25 0.17



Implications

• The stationary distribution 
π(v) = d(v)/2m

is proportional to the degree of v.

– What’s the intuition?

– The more neighbors you have, the more chance 
you’ll be visited. 

• We’ll talk about it later



Definitions

𝐴 =

0 1
1 0
1 0

1 0 0
0 1 0
0 1 1

0 1
0 0

1 0 1
1 1 0

Adjacency Matrix

M=

0 1/2
1/2 0
1/3 0

1/2 0 0
0 1/2 0
0 1/3 1/3

0 1/3
0 0

1/3 0 1/3
1/2 1/2 0

Transition (random walk) Matrix
M=DA

𝐷 =

1/2 0
0 1/2
0 0

0 0 0
0 0 0
1/3 0 0

0 0
0 0

0 1/3 0
0 0 1/2

Diagonal matrix with Di,i = 1/d(i)



Adjacency Matrix

• A is n x n adjacency matrix of G=(V,E)

– Aij is 1 if there is a link between i and j nodes and 0 
otherwise

• Gives us all 1-hop paths.

• How to count # of 2-hop paths?

– A2



Matrix manipulations

• A2 gives us # of 2-hop paths
• A3 gives us ?

– # of 3-hop paths, etc.
– not simple paths! Can refer as walks.

• What about taking a vector v=(1 0 0 0 0) that represents a 
message at the first node and multiplying it by A? 

𝑣𝐴 = 1 0 0 0 0

0 1
1 0
1 0

1 0 0
0 1 0
0 1 1

0 1
0 0

1 0 1
1 1 0

• vA=(0 1 1 0 0)
– indicates how many walks of length 1 from node 1 end up in node i.

• vA2 = (2 0 0 2 1)
– Indicates how many walks of length 2 from node 1 end up in node i.

• vA3 = (0 4 5 1 2)
– Indicates how many walks of length 3 from node 1 end up in node i.



Matrix manipulations (cont.)

• What about multiplying by a 
Random Walk Matrix?

1 0 0 0 0

0 1/2
1/2 0
1/3 0

1/2 0 0
0 1/2 0
0 1/3 1/3

0 1/3
0 0

1/3 0 1/3
1/2 1/2 0

= 0 1/2 1/2 0 0

M=

0 1/2
1/2 0
1/3 0

1/2 0 0
0 1/2 0
0 1/3 1/3

0 1/3
0 0

1/3 0 1/3
1/2 1/2 0

Transition (random walk) Matrix
M=DA

0 1/2 1/2 0 0

0 1/2
1/2 0
1/3 0

1/2 0 0
0 1/2 0
0 1/3 1/3

0 1/3
0 0

1/3 0 1/3
1/2 1/2 0

= 0.42 0 0 0.42 0.17



What about Random Walk Matrix M? 
(cont.)

• Recap: Random walk on a graph G: we start at a node 
v0 and at the t-th step we are at a node vt. We move to 
a neighbor of vt with probability 1/d(vt).
– The sequence of random nodes (vt :t=0,1,2…) is a Markov 

chain

• We start from the initial state of the system, e.g. P0: [1 
0 0 0 0]; 
– Can also be drawn from some initial distribution

• Pt= P0Mt

– Or can be written as Pt= (MT)tP0 if we represent P as a 
column vector



Again the same Example

– When Pt+1 =Pt = π, we have reached stationary 
distribution, i.e. πM= π

– Recall: that v is eigenvector of matrix M and λ its 
eigenvalue if vM=λv
• so π is eigenvector of M with eigenvalue λ=1

1 0 0 0 0

0 1/2
1/2 0
1/3 0

1/2 0 0
0 1/2 0
0 1/3 1/3

0 1/3
0 0

1/3 0 1/3
1/2 1/2 0

= 0 1/2 1/2 0 0

0 1/2 1/2 0 0

0 1/2
1/2 0
1/3 0

1/2 0 0
0 1/2 0
0 1/3 1/3

0 1/3
0 0

1/3 0 1/3
1/2 1/2 0

= 0.42 0 0 0.42 0.17

Pt= P0Mt


