Watts-Strogatz Model

 Regular graph with degree k connected to nearest neighbors

We start with a where each vertex like so.
ring of nvertices is connected to its
k nearest neighbors

III

* Can be also a grid, torus, or any other “geographical” structure

which has high clusterisation and high diameter
* With probability p rewire each edge in the network to a random
node.
— Q: What happens when p=1?



Watts-Strogatz Model (cont.)

* When p=1 we have ~Erdos-Renyi network

* There is a range of p values where the network
exhibits properties of both: random and regular
graphs:

* High clusterisation;
e Short path length.

Regular Small-world

Increasing randomness
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Demo Small Worlds

* http://ccl.northwestern.edu/netlogo/models/
SmallWorlds



http://ccl.northwestern.edu/netlogo/models/SmallWorlds

Small Worlds and Real Networks

* More realistic than Erdos-Renyi

— Low path length
— High clusterisation

 What other properties of real world networks
are missing?
* Degree distribution

— Watts-Strogatz model might be good for certain
applications (e.g., P2P networks)

— But can not model real world networks where degree
distributions are usually power law.



Preferential attachment Model

Start with Two connected nodes
— Add a new node v

— Create a link between v and one of the existing nodes with probability
proportional to the degree of the that node

* P(u,v) = d(u)/Total_network_degree
Rich get richer phenomenon!
Exhibits power-law distributions
Can be extended to m links (Barabasi-Albert model)

— Start with connected network of m, nodes

— Each new node connects to m nodes (m < m,) with aforedescribed
pref. attachment principle.

http://ccl.northwestern.edu/netlogo/models/Preferential Attachme
nt



http://ccl.northwestern.edu/netlogo/models/PreferentialAttachment

Recap: Network properties

* Each network is unique “microscopically”, but
in large scale networks one can observe
macroscopic properties:

— Diameter (six-degrees of separation);

— Clustering coefficient (triangles, friends-of-friends
are also friends);

— Degree distribution (are there many “hubs” in the
network?);



Expanders

* Expanders are graphs with very strong connectivity
properties.

— sparse yet very well-connected
 Example

— N nodes, E edges N=E

— Does this graph have

good connectivity properties?

— 2 edges fail ->

isolates up to N/2 nodes

Can one isolate large number of nodes by removing small
number of edges?



Expansion

* Expansion a:
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 How robust are your
graphs?
* To isolate k nodes

one needs to
remove at least a*k

edges
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Examples

* Which networks do you think have good
expansion (random graph, tree, grid)?
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Properties of Expander Graphs

A graph is an expander if the number of edges
originating from every subset of vertices is larger than
the number of vertices at least by a constant factor
(more than 1).

» Sparse yet very well-connected (no small cuts, no bottlenecks)
* Small second eigenvalue A,(we will talk about it later)
* Rapid convergence of random walk

* For all practical reasons, random walk of TTL =
O(logN) on an expander graph with fixed node
degree gives an uniform random node from the
population



Random Walks

* Let G(V,E) be
connected graph.

A
e Consider random
walk on G from
2 —5 node v.

— We move to a
neighboring node
with probability

- b 1/d(v)
L{ - — The sequence of
; random walks is
Markov chain



Random Walks

Node 4 Node 2 Node3 Node! Node s~
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Convergence

* For any connected
non-bipartite
bidirectional graph,
and any starting
point, the random
walk converges

— Converges to
unique stationary
distribution

— Power lteration
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Stationary Distribution

* Which distribution does the random walk converge in our
graph? N G G G25 U V2SI G
' 0.17 0.17 025 0.25 0.17
e Random WaIk converges to the stationary distribution:
r(v) = d(v)/2m
— d(v) = degree of v, i.e. # of neighbors.
— m: |E]|, i.e. # of edges.

— If Gfaph d-regular then to uniform disg OR 1
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Implications

* The stationary distribution
r(v) = d(v)/2m
is proportional to the degree of v.
— What's the intuition?

— The more neighbors you have, the more chance
you’ll be visited.

 We'll talk about it later



Definitions

0110 0 /20 0 0 0
1 0010 o 12 0 0 0
A=[1 0 0 1 1 p=l 0 o 1/3 0 0
0110 1 0 0 0 1/3 0
001 10 0 0 0 0 1/2
Adjacency Matrix Diagonal matrix with D;; = 1/d(i)
A 0 1/2 1/2 0 0

12 0 0 1/2 0

M=|1/3 0 0 1/3 1/3

2 Yo 0 1/3 1/3 0 1/3
0 0 1/2 1/2 0

Transition (random walk) Matrix

¢ T 5




Adjacency Matrix

* Ais n x n adjacency matrix of G=(V,E)

— A, is 1if there is a link between i and j nodes and 0
otherwise

* Gives us all 1-hop paths.

* How to count # of 2-hop paths? '.l‘,"
— A2 )
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Matrix manipulations

A
3 i >,‘5
. VA=(01100) & - *LS_

— indicates how many walks of length 1 from node 1 end up in node i.
e VA2=(20021)

— Indicates how many walks of length 2 from node 1 end up in node i.
 VvA3=(04512)

— Indicates how many walks of length 3 from node 1 end up in node i.

A? gives us # of 2-hop paths
A3 gives us ?
— # of 3-hop paths, etc.
— not simple paths! Can refer as walks.

What about taking a vector v=(1 0 0 0 0) that represents a
message at the first node and multiplying it by A?

vA=(1 0 0 0 0)
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Matrix manipulations (cont.)

0 1/2 1/2 0 0

 What about multiplyingbya (12 o o 12 o

Random Walk Matrix: 0 13 13 0 1/3

o o0 1/2 1/2 0

Transition (random walk) Matrix

0 1/2 1/2 0 0 M=DA

1/2 0 0 1/2 0
100 0 013 0o 0 1/3 1/3|=0 1/2 1/2 0 0)

0 1/3 1/3 0 1/3

0o o0 1/2 1/2 0

0 1/2 1/2 0 0
/2 0 0 1/2 0
o 1/2 1/2 0 0f1/3 0 0 1/3 1/3|=(042 0 0 042 0.17)
0o 13 1/3 0 1/3
0o o0 1/2 1/2 0



What about Random Walk Matrix M?
(cont.)

* Recap: Random walk on a graph G: we start at a node
Vo, and at the t-th step we are at a node v,. We move to

a neighbor of v, with probability 1/d(v,).
— The sequence of random nodes (v, :t=0,1,2...) is a Markov
chain
* We start from the initial state of the system, e.g. P,: [1
0000];

— Can also be drawn from some initial distribution
* P=P,M!
— Or can be written as P.= (M")'P, if we represent P as a
column vector



Again the same Example

P=P.M! 0 1/2 1/2 0 0
t "0 12 0 0 1/2 0

@000 0|13 0o o0 1/3 1/3|=0 1/2 1/2 0 0)
0 1/3 1/3 0 1/3
o 0 1/2 1/2 0

0 1/2 1/2 0 0
/2 0 0 1/2 0
o 1/2 1/2 0 0|1/3 0 0 1/3 1/3|=(042 0 0 042 0.17)
0o 1/3 1/3 0 1/3
o 0 1/2 1/2 0

— When P,,, =P, = T, we have reached stationary
distribution, i.e. tM=m

— Recall: that v is eigenvector of matrix M and A its
eigenvalue if vM=Av

* 5o 1t is eigenvector of M with eigenvalue A=1



