Watts-Strogatz Model

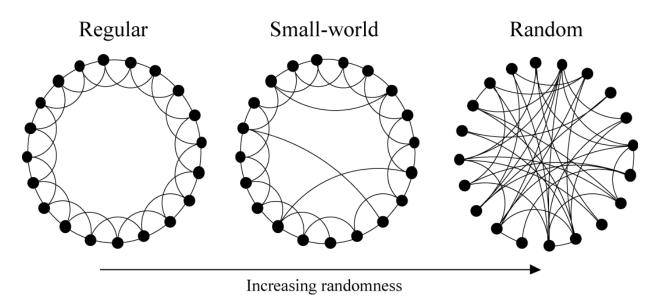
Regular graph with degree k connected to nearest neighbors

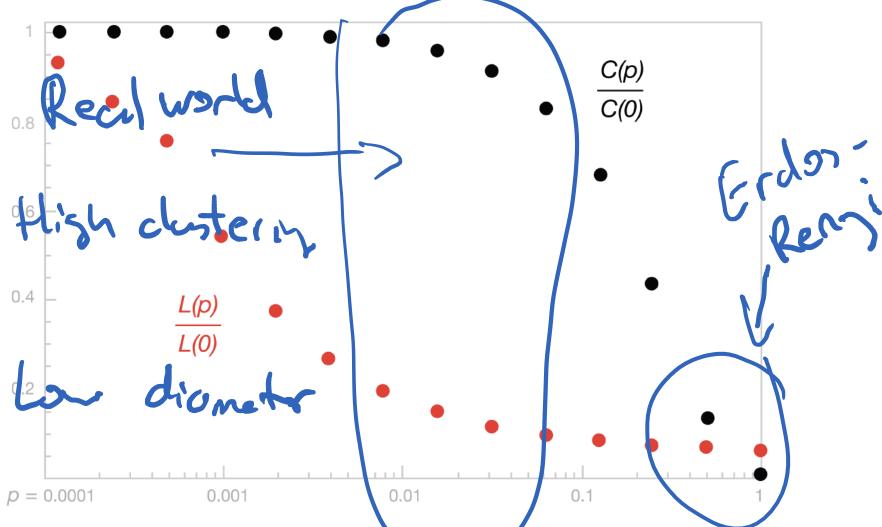
We start with a where each vertex ring of n vertices is connected to its k nearest neighbors k = 4

- Can be also a grid, torus, or any other "geographical" structure which has high clusterisation and high diameter
- With probability p rewire each edge in the network to a random node.
 - Q: What happens when p=1?

Watts-Strogatz Model (cont.)

- When p=1 we have ~Erdos-Renyi network
- There is a range of p values where the network exhibits properties of both: random and regular graphs:
 - High clusterisation;
 - Short path length.





The data shown in the figure are averages over 20 random realizations of the rewiring process, and have been normalized by the values L(0), C(0) for a egular lattice. All the graphs have n = 1000 vertices and an average degree of k = 10 edges per vertex. We note that a logarithmic horizontal scale has been used to resolve the rapid drop in L(p), corresponding to the onset of the small-world phenomenon. During this drop, C(p) remains almost constant at its value for the regular lattice, indicating that the transition to a small world is almost undetectable at the local level.

Demo Small Worlds

 http://ccl.northwestern.edu/netlogo/models/ SmallWorlds

Small Worlds and Real Networks

- More realistic than Erdos-Renyi
 - Low path length
 - High clusterisation
- What other properties of real world networks are missing?
- Degree distribution
 - Watts-Strogatz model might be good for certain applications (e.g., P2P networks)
 - But can not model real world networks where degree distributions are usually power law.

Preferential attachment Model

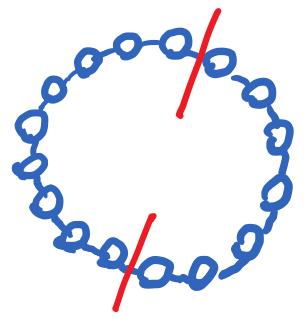
- Start with Two connected nodes
 - Add a new node v
 - Create a link between v and one of the existing nodes with probability proportional to the degree of the that node
 - P(u,v) = d(u)/Total_network_degree
- Rich get richer phenomenon!
- Exhibits power-law distributions
- Can be extended to m links (Barabasi-Albert model)
 - Start with connected network of m₀ nodes
 - Each new node connects to m nodes (m \leq m₀) with aforedescribed pref. attachment principle.
- http://ccl.northwestern.edu/netlogo/models/PreferentialAttachment
 nt

Recap: Network properties

- Each network is unique "microscopically", but in large scale networks one can observe macroscopic properties:
 - Diameter (six-degrees of separation);
 - Clustering coefficient (triangles, friends-of-friends are also friends);
 - Degree distribution (are there many "hubs" in the network?);

Expanders

- Expanders are graphs with very strong connectivity properties.
 - sparse yet very well-connected
- Example
 - N nodes, E edges N=E
 - Does this graph have good connectivity properties?
 - 2 edges fail ->isolates up to N/2 nodes

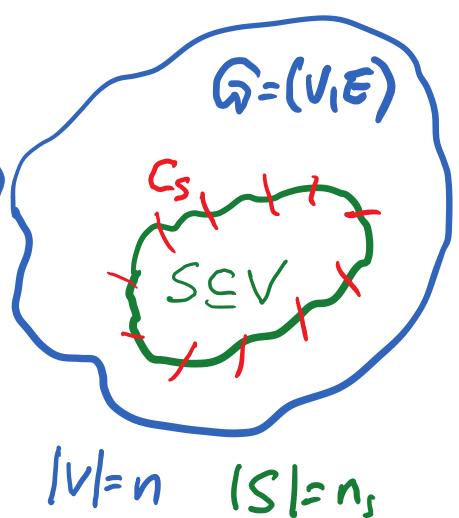


Can one isolate large number of nodes by removing small number of edges?

Expansion

• Expansion α :

- How robust are your graphs?
- To isolate k nodes one needs to remove at least α*k edges



Examples

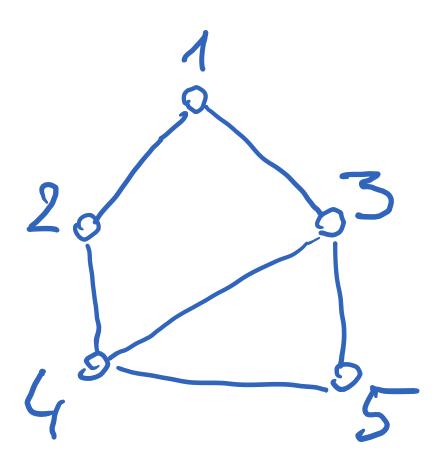
 Which networks do you think have good expansion (random graph, tree, grid)?

High exponsion Low expansion Social networks

Properties of Expander Graphs

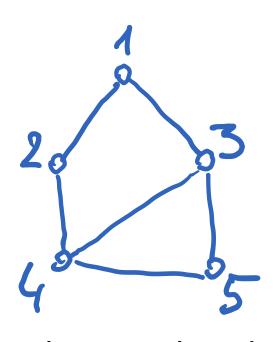
- A graph is an expander if the number of edges originating from every subset of vertices is larger than the number of vertices at least by a constant factor (more than 1).
 - Sparse yet very well-connected (no small cuts, no bottlenecks)
 - Small second eigenvalue λ_2 (we will talk about it later)
 - Rapid convergence of random walk
- For all practical reasons, random walk of TTL = O(logN) on an expander graph with fixed node degree gives an uniform random node from the population

Random Walks



- Let G(V,E) be connected graph.
- Consider random walk on G from node v.
 - We move to a neighboring node with probability 1/d(v)
 - The sequence of random walks is
 Markov chain

Random Walks



 The initial node can be fixed, but also can be drawn from some initial distribution P₀

	Node 1	Node 2	Node 3	Nok4	Node 5
Time					
0	1	0	0	0	0
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					

Convergence

- For any connected non-bipartite
 bidirectional graph, and any starting
 point, the random
 walk converges
 - Converges to unique stationary distribution
 - Power Iteration

	. 90				
t		1 () C	0
1	0.00	0.50	0.50	0.00	0.00
2	0.42	0.00	0.00	0.42	0.17
3	0.00	0.35	0.43	0.08	0.14
4	0.32	0.03	0.10	0.39	0.17
5	0.05	0.29	0.37	0.13	0.16
6	0.27	0.07	0.15	0.35	0.17
7	0.08	0.25	0.33	0.17	0.17
8	0.24	0.10	0.18	0.32	0.17
9	0.11	0.22	0.31	0.19	0.17
10	0.22	0.12	0.20	0.30	0.17
11	0.13	0.21	0.29	0.21	0.17
12	0.20	0.13	0.22	0.28	0.17
13	0.14	0.19	0.28	0.22	0.17
14	0.19	0.14	0.23	0.27	0.17
15	0.15	0.19	0.27	0.23	0.17
16	0.18	0.15	0.23	0.27	0.17
17	0.15	0.18	0.26	0.24	0.17
18	0.18	0.16	0.24	0.26	0.17
19	0.16	0.18	0.26	0.24	0.17
20	0.17	0.16	0.24	0.26	0.17
21	0.16	0.17	0.26	0.24	0.17
22	0.17	0.16	0.24	0.26	0.17
23	0.16	0.17	0.25	0.25	0.17
24	0.17	0.16	0.25	0.25	0.17
25	0.16	0.17	0.25	0.25	0.17
26	0.17	0.16	0.25	0.25	0.17
27	0.16	0.17	0.25	0.25	0.17
28	0.17	0.16	0.25	0.25	0.17
29	0.17	0.17	0.25	0.25	0.17
30	0.17	0.17	0.25	0.25	0.17

Stationary Distribution

Which distribution does the random walk converge in our graph?

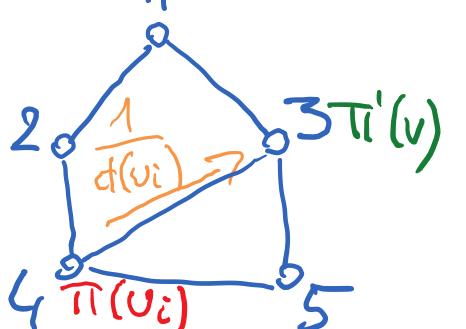
π	0.17	0.17	0.25	0.25	0.17
π'	0.17	0.17	0.25	0.25	0.17

Random walk converges to the stationary distribution:

$$\pi(v) = d(v)/2m$$

- d(v) = degree of v, i.e. # of neighbors.
- m: |E|, i.e. # of edges.

If Graph d-regular then to uniform distribution



$$= \sum_{u: (u,v) \in E} \frac{d(u)}{2m} \cdot \frac{1}{d(u)}$$

$$= \sum_{u: (u,v) \in E} \frac{1}{2m}$$

$$= \frac{d(v)}{2m}$$

$$= \pi(v)$$

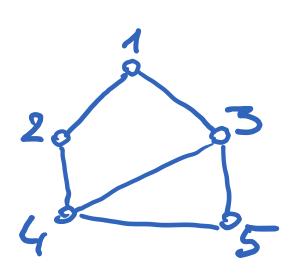
Implications

- The stationary distribution $\pi(v) = d(v)/2m$ is proportional to the degree of v.
 - What's the intuition?
 - The more neighbors you have, the more chance you'll be visited.
 - We'll talk about it later

Definitions

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$

Adjacency Matrix



$$D = \begin{pmatrix} 1/2 & 0 & 0 & 0 & 0 \\ 0 & 1/2 & 0 & 0 & 0 \\ 0 & 0 & 1/3 & 0 & 0 \\ 0 & 0 & 0 & 1/3 & 0 \\ 0 & 0 & 0 & 0 & 1/2 \end{pmatrix}$$

Diagonal matrix with $D_{i,i} = 1/d(i)$

$$\mathsf{M} = \begin{pmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \\ 1/3 & 0 & 0 & 1/3 & 1/3 \\ 0 & 1/3 & 1/3 & 0 & 1/3 \\ 0 & 0 & 1/2 & 1/2 & 0 \end{pmatrix}$$

Transition (random walk) Matrix M=DA

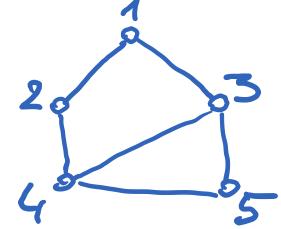
Adjacency Matrix

- A is n x n adjacency matrix of G=(V,E)
 - A_{ij} is 1 if there is a link between i and j nodes and 0 otherwise
- Gives us all 1-hop paths. # of 2-hop
 , peths from How to count # of 2-hop paths? $-A^2$

Matrix manipulations

- A² gives us # of 2-hop paths
- A³ gives us?
 - # of 3-hop paths, etc.
 - not simple paths! Can refer as walks.
- What about taking a vector v=(1 0 0 0 0) that represents a message at the first node and multiplying it by A?

$$vA = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$



- vA=(0 1 1 0 0)
 - indicates how many walks of length 1 from node 1 end up in node i.
- $vA^2 = (2 0 0 2 1)$
 - Indicates how many walks of length 2 from node 1 end up in node i.
- $vA^3 = (0.4512)$
 - Indicates how many walks of length 3 from node 1 end up in node i.

Matrix manipulations (cont.)

• What about multiplying by a Random Walk Matrix? $M = \begin{pmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \\ 1/3 & 0 & 0 & 1/3 & 1/3 \\ 0 & 1/3 & 1/3 & 0 & 1/3 \\ 0 & 0 & 1/2 & 1/2 & 0 \end{pmatrix}$

Transition (random walk) Matrix M=DA

$$(1 \quad 0 \quad 0 \quad 0 \quad 0) \begin{pmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \\ 1/3 & 0 & 0 & 1/3 & 1/3 \\ 0 & 1/3 & 1/3 & 0 & 1/3 \\ 0 & 0 & 1/2 & 1/2 & 0 \end{pmatrix} = (0 \quad 1/2 \quad 1/2 \quad 0 \quad 0)$$

$$\begin{pmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \\ 1/3 & 0 & 0 & 1/3 & 1/3 \\ 0 & 1/3 & 1/3 & 0 & 1/3 \\ 0 & 0 & 1/2 & 1/2 & 0 \end{pmatrix} = (0.42 \quad 0 \quad 0.42 \quad 0.17)$$

What about Random Walk Matrix M? (cont.)

- Recap: Random walk on a graph G: we start at a node v_0 and at the t-th step we are at a node v_t . We move to a neighbor of v_t with probability $1/d(v_t)$.
 - The sequence of random nodes (v_t:t=0,1,2...) is a Markov chain
- We start from the initial state of the system, e.g. P₀: [1 0 0 0 0];
 - Can also be drawn from some initial distribution
- $P_t = P_0 M^t$
 - Or can be written as P_t= (M^T)^tP₀ if we represent P as a column vector

Again the same Example

$$\begin{pmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \\ 1/3 & 0 & 0 & 1/3 & 1/3 \\ 0 & 1/3 & 1/3 & 0 & 1/3 \\ 0 & 0 & 1/2 & 1/2 & 0 \end{pmatrix} = (0.42 \quad 0 \quad 0.42 \quad 0.17)$$

- When $P_{t+1} = P_t = \pi$, we have reached stationary distribution, i.e. $\pi M = \pi$
- Recall: that v is **eigenvector** of matrix M and λ its eigenvalue if **vM=\lambdav**
 - so π is eigenvector of M with eigenvalue $\lambda=1$