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Artificial Neural Networks (ANN)

@ Feed Forward Networks @ Inspired from the nervous system
@ Applications

. o Parallel processing
@ Classical Examples

We will focus on one class of ANNs:

Feed-forward Layered Networks
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Applications

Operates like a general " Learning Box"!

ALVINN
Classification

Autonomous driving

» — — Yes/No
Function Approximation C [> @

» 1, 1] Video image Steering

Trained to mimic the behavior of human drivers

Multidimensional Mapping
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Classical Examples

NetTalk

Speech Synthesis
© Multi Layer Networks

@ Possible Mappings
" " > i > @ Backprop Algorithm
Hello Phoneme [> ‘ @ Practical Problems

Written text Coded pronunciation

Trained using a large database of spoken text
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Practical Problems

How can we train a multi layer network?

Neither perceptron learning, nor the delta rule can be used

Fundamental problem:

When the network gives the wrong answer
there is no information on in which direction
the weights need to change to improve the result

Trick:
Use threshold-like, but continuous functions

—H:Ij‘ —H:Ij‘

A two layer network can implement arbitrary decision surfaces
: ) : I A
...provided we have enough hidden units — —

—H:I—/ —H:I—/

6rjar1 Ekeberg Machine Learning érjan Ekeberg Machine Learning

Possible Mappings Possible Mappings
Multi Layer Networks Backprop Algorithm Multi Layer Networks Backprop Algorithm
Practical Problems Practical Problems

Learning strategy:

Minimize the error (E) as a function of all weights ()

_ @ Compute the direction in weight space where the error
First layer response Sum of base functions increases the most grad (E)

@ Change the weights in the opposite direction

OE
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1
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Practical Problems Practical Problems

Normally one can use the error from each example separately The gradient can be expressed as a function of a local generalized
error &
1
E=3 Z(tk—ok)z OF
2
kEOue s = 0% Wi Wi 0
ji

A common "threshold-like function” is
Output layer:

p(y): 1 5k:Ok-(1—Ok)'(tk—Ok)
1+ey
Hidden layers:
H% 5/,:0/7-(1—0;,)' Z th5k
keOut
>
X The error & propagates backwards through the layers
Error backpropagation (BackProp)

Possible Mappings

Multi Layer Networks Backprop Algorithm Vanishing Gradients

Convolutional Networks

Practical Problems Deep Networks

Things to think about when using BackProp
@ Sloooow
Normal to require thousands of iterations through the dataset

@ Gradient following
Risk of getting stuck in local minima

@ Many parameters

o Step size n

o Number of layers

o Number of hidden units e Deep Networks

e Input and output representation . .

o Initial weights @ Vanishing Gradients

@ Convolutional Networks
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Convolutional Networks Convolutional Networks
Deep Networks onve e Deep Networks onve ©

Deep Belief Networks

@ Unsupervised learning of features

@ Greedy learning from the bottom, layer by layer

. S ised Back to finalize classifi
Deep networks — Networks with many layers @ Supervised Backprop to finalize classier

@ Error gradients become smaller from layer to layer

@ Backprop becomes unusable for deep networks
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Vanishing Gradients

Deep Networks Convolutional Networks

Convolutional Networks

@ Alternating convolution and subsamping layers
o Weight sharing
@ Trained using Backprop
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