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Artificial Neural Networks (ANN)

Inspired from the nervous system

Parallel processing

We will focus on one class of ANNs:

Feed-forward Layered Networks
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Applications

Operates like a general ”Learning Box”!

Classification

Yes/No

Function Approximation

[−1, 1]

Multidimensional Mapping
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ALVINN

Autonomous driving

Video image Steering

Trained to mimic the behavior of human drivers
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NetTalk

Speech Synthesis

"Hello"

Written text Coded pronunciation

Phoneme

Trained using a large database of spoken text
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What is the point of having multiple layers?

A two layer network can implement arbitrary decision surfaces
...provided we have enough hidden units

Örjan Ekeberg Machine Learning

Feed Forward Networks
Multi Layer Networks

Deep Networks

Possible Mappings
Backprop Algorithm
Practical Problems

How can we train a multi layer network?

Neither perceptron learning, nor the delta rule can be used

Fundamental problem:

When the network gives the wrong answer
there is no information on in which direction

the weights need to change to improve the result

Trick:
Use threshold-like, but continuous functions

Σ Σ
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First layer response Sum of base functions
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wkj

vji

xi

hj

yk

Learning strategy:

Minimize the error (E ) as a function of all weights (~w)

1 Compute the direction in weight space where the error
increases the most grad~w (E )

2 Change the weights in the opposite direction

wi ← wi − η
∂E

∂wi
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Normally one can use the error from each example separately

E =
1

2

∑
k∈Out

(tk − ok)2

A common ”threshold-like function” is

ρ(y) =
1

1 + e−y

x

1
1+e−x
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The gradient can be expressed as a function of a local generalized
error δ

∂E

∂wji
= −δixj wji ← wji + ηδixj

Output layer:
δk = ok · (1− ok) · (tk − ok)

Hidden layers:

δh = oh · (1− oh) ·
∑

k∈Out

wkhδk

The error δ propagates backwards through the layers
Error backpropagation (BackProp)
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Things to think about when using BackProp

Sloooow
Normal to require thousands of iterations through the dataset

Gradient following
Risk of getting stuck in local minima

Many parameters

Step size η
Number of layers
Number of hidden units
Input and output representation
Initial weights
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Deep networks — Networks with many layers

Error gradients become smaller from layer to layer

Backprop becomes unusable for deep networks
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Deep Belief Networks

Unsupervised learning of features

Greedy learning from the bottom, layer by layer

Supervised Backprop to finalize classifier
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Convolutional Networks

Alternating convolution and subsamping layers

Weight sharing

Trained using Backprop
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