IE1204 Digital Design

F11: Programmable Logic,
VHDL for Sequential Circuits

Masoumeh (Azin) Ebrahimi (masebr@kth.se)

Elena Dubrova (dubrova@kth.se)
KTH/ICT/ES

This lecture

. BV pp. 98-118, 418-426, 507-519

IE1204 Digital Design, Autumn2015

Programmable Logic Devices

 Programmable logic devices (PLDs)
were Iintroduced In the 1970s

 They are based on a structure with an
AND-OR array that makes it easy to
Implement a sum-of-products
expression

IE1204 Digital Design, Autumn2015

Structure of a PLD

Input buffers

and
inverters
X1] %1 Xn| *n
| A | vy p
1
———
[]
AND plane * OR plane
P °
——
fq fm

IE1204 Digital Design, Autumn2015

Programmable Logic Array (PLA)

X %% X3
e Both AND and OR
arrays are VIiVIV
OR
programmable
%%)Ry Planey
| J
- —% * _ 3
fo=X, XX, XoXa+X X
2T A1 T A ARAZT AN Il Y 1(D R4 4
—% % D &
AND tj
plane

IE1204 Digital Design, Autumn2015 5

Programmable Array Logic (PAL)

X1 X x3

« Only the AND array is | | |

programmable V Y V
o %% X R
F1 =X XX 5HX XoX3 f
_P
eylky: —% X
f,=X X5+ X X X5 |/
*——x W
_/
— f
P,
—¥ % X
__/
AND plane

IE1204 Digital Design, Autumn2015 6

Combinatorial and register outputs

e |n earlier PLDs there were
— combinatorial outputs
— register outputs (outputs with a flip-flop)

 For each circuit the number of combinational
and register outputs was fixed

* To increase flexibility, macrocells were
Introduced

— one can choose if an output Is
combinatorial or has a flip-flop

IE1204 Digital Design, Autumn2015 7

Macrocells in a PLD

Clock

To AND plane

Flip-flop

D

Q

Select
Enable

A programmable
multiplexer can be
used to select the
type of output

IE1204 Digital Design, Autumn2015

Programming of PLDs

2

o

| a.;_:t_%_

=N

3

.

=i

IE1204 Digital Design, Autumn2015

Complex PLD's (CPLD)

PLDs were quite small (PALCE 22V10
had 10 flip-flops)

To program larger functions, structures
consisting of several PLD-like blocks
were developed called Complex PLD
(CPLD)

IE1204 Digital Design, Autumn2015 10

I/0O block

I/0O block

CPLD Structure

.7 PAL-like
. block
-
; PAL-like
- block
>

-
<

PAL-like - |2
block)
(@)

) | T

] _

PALlike | + |9
block -0
- =

IE1204 Digital Design, Autumn2015

11

Programming of CPLDs via the
JTAG Interface

« Modern CPLDs (and FPGAS) can be
programmed by downloading circuit
description (programming information)
via a cable

 Download usually uses a standard port
called JTAG port (Joint Test Action
Group)

IE1204 Digital Design, Autumn2015

12

Programming via the JTAG port

You can program the
chips when they are
soldered to the circuit
board - using the

(a) CPLD in a Quad Flat Pack (QFP) package prog ram mer you Can
select which chip you

To computer

want to program

/ through the JTAG port

Printed
circuit board

(b) JTAG programming

IE1204 Digital Design, Autumn2015 13

Field Programmable Gate Arrays

« CPLDs are based on the AND-OR array

* It is difficult to make really large
functions using CPLDs

« FPGASs use a different concept based
on logic blocks

IE1204 Digital Design, Autumn2015 14

Structure of an FPGA

I Logic block Interconnection switches

| /O block

/O block
2019 O/1

| /O block

IE1204 Digital Design, Autumn2015

Look-up-tables (LUT)

Programmable

cells ~

0/1 \
0/1 0

1
0/1 1 /0
0/1 0

Two-input LUT

A LUT with n inputs can
realize all
combinational functions
with up to n inputs.

The usual size of LUT
In an FPGAiIsn=4

IE1204 Digital Design, Autumn2015

16

Logic Block in a FPGA

e Alogic block in an FPGA often consists of a
LUT, a flip-flop and a multiplexer to select
register output

In, LUT

Clock

Select

Out
Flip-flop

D Q

IE1204 Digital Design, Autumn2015

17

Programming the LUT's and the
connection matrix in an FPGA

Blue cross: switch
IS programmed

Black cross: switch
IS not programmed

f=f, +f,

f=X X5+ X5X5

X3

XX

X

f

XXX

(ol e

° e =)

IE1204 Digital Design, Autumn2015

DE2 University Board

e DE2 Board

— Cyclone Il EP2C35

FPGA (Datorteknik-
course)

— 4 Mbytes of flash
memory

— 512 Kbytes of static
RAM

— 8 Mbytes of SDRAM
— Several I/0O-Devices
— 50 MHz oscillator

IE1204 Digital Design, Autumn2015 19

Cyclone Il
Logic Element

LAB Carry-In

Register Chain
Routing From
Previous LE

LAB-Wide
Synchronous

Load

LAB-Wide

Synchronous

Clear
|

Register Bypass

Packed
Register Select

/

Programmable
Register

datal ———— P . > Row, Column,
data2 =———9 Look-Up c Synchronous And Direct Link
data3 Table alry Load and b o > Routin
Chain - 9
— (LUT) Clear Logic
datad > (>
—P»|ENA
& CLAN > Row, Column,
And Direct Link
Routing
labclrt ——p»]
labclr2 —»| Asynchronous R :
Chip-Wide Clear Logic - Local Routing
Reset —p»]
(DEV_CLRn)
-Clock& Register Chain
Register Output
C'%ZE';?NQ Feedback
labclk1 i~
labclk2 —
labclkenat >
labclkena2 —P>
L LAB Carry-Out

IE1204 Digital Design, Autumn2015

20

Cyclone Il Family

Table 1-1. Cyclone Il FPGA Family Features
Feature EP2C5 | EP2C8 (2) | EP2C15 (7) | EP2C20 (2) | EP2C35 EP2C50 EP2C70
LEs 4,608 8,256 14,448 18,752 33,216 50,528 68,416
M4K RAM blocks (4 26 36 e b2 105 129 250
Kbits plus
512 parity bits
Total RAM bits 119,808 165,888 239,616 239,616 483,840 594,432 | 1,152,000
Embedded 13 18 26 26 35 86 150
multipliers (3)
PLLs 2 2 4 4 4 4 4
Maximum user 158 182 315 315 475 450 622
I/O pins
N—/

(3) Total Number of 18x18 Multipliers DE2

IE1204 Digital Design, Autumn2015 21

Stratix Il Family

Table 1-1. Stratix Ill FPGA Family Features

. x -
Dovies) I aLms | LEs | gt | Hia | AR EmLc::cllgd I:_IAIRE E_ﬁn‘ Jlﬁu:lflig:rls PLLs
RAM Khits | Khits(?) | Kbits(3) | (FIR Mode)
Stratix Il | EP3SL50 | 19K | 47.5K | 108 6 950 1,836 297 | 2,133 216 4
Logic EP3SL70 | 27K | 67.5K | 150 6 |1.350 | 2214 422 | 2636 288 4
Family FP3SI 110 | 43K | 107 5K | 275 12 121501 4203 672 4 875 288 8
EP3SL150 | 57K | 142.5K | 355 16 | 2,850 | 5,499 891 6,390 384 8 DE3 Board
EP3SL200 | 80K | 200K | 468 36 | 4,000 | 9.396 1,250 | 10,646 576 12
EP3SE260 | 102K | 255K | 864 | 48 | 57100 | 14,688 | 1,594 | 16,282 768 12
EP3SL340 | 135K | 337.5K | 1,040 | 48 | 6,750 | 16,272 | 2,109 | 18,381 576 12
Stratix Il | EP3SE50 | 19K | 47.5K | 400 12 | 950 5,328 297 | 5,625 384 4
Enhanced | £p3spso | a2k | sok | 495 | 12 | 1600 | 6,183 500 | 6683 672 8
Family EP3SE110 | 43K | 107.5K | 639 16 | 2,150 | 8,055 672 8,727 896 8
EP3SE260 | 102K | 255K | 864 | 48 | 57100 | 14,688 | 1,594 | 16,282 768 12
(1)
22

IE1204 Digital Design, Autumn2015

Multiple processors can be
Implemented on an FPGA

| H
Nios Il
H
Nios Il
N

* Nine Il is a so-called 'soft-
processor' (32-bit) that
can be implemented on
Altera’'s FPGAs

 Today's FPGAs are so
large that multiple
processors can fit on a
single FPGA chip

Very powerful multiprocessor
systems can be created on an

FPGA!

IE1204 Digital Design, Autumn2015

23

ASICs

 An ASIC (Application Specific Integrated
Circuit) is a circuit which is manufactured at a
semiconductor factory

* |n a full custom integrated circuit, the entire
circuit iIs customized

* |n an ASIC, some design steps have already
been made to reduce design time and cost

 There are several types of ASICs:
— Gate array ASICs
— Standard cell ASIC

IE1204 Digital Design, Autumn2015 24

ASICs: Gate Array

e In a gate array ASIC, gates (or transistors) are
already on silicon

[e el el P eiasid] e ke
2| 2l el Bl Fisesi] ki)k
2 Do Do e e eee e[
BABIDIDID I D
BB b BB BB

o

wlv
slv
olv
ol
vy
oy
slv

o

IE1204 Digital Design, Autumn2015

ASICs: Gate Array

 We only need
to create the
links between
the inputs and
outputs of
gates

) YL

IE1204 Digital Design, Autumn2015

26

ASICs: Standard Cells

« A standard cell can for example be AND, OR, Invert,
XOR, XNOR, buffer, or a storage function as flipflop
or latch.

IE1204 Digital Design, Autumn2015

27

FPGA, Gate Array, Standard Cell

Comparison

Initial Cost Cost per part | Performance | Fabrication
Time
FPGA Low High Low Short
| |
Gate Array
(ASIC)
Standard Cell | High Low High Long
(ASIC)

IE1204 Digital Design, Autumn2015

28

Design Trade-Offs

1 Design Time

Standard Cell

[
»

Performance

IE1204 Digital Design, Autumn2015

VHDL: Sequential circuits

IE1204 Digital Design, Autumn2015

30

Moore machine

State

NEXT STATE STATE REGISTER OUTPUT

DECODER
Input CO DECODER | () 1oy

signals signals

Clk——

* |n a Moore-type machine output signals
depend only on the current state

IE1204 Digital Design, Autumn2015 31

How to model a state machine in
VHDL?

 |n a Moore machine, we have three
blocks

— Next state decoder
— Output decoder
— State register

 These blocks are executed in parallel

IE1204 Digital Design, Autumn2015

32

Quick guestion

 Which logic gate Is represented by the
following VHDL code?

g <= a and (not b);

IE1204 Digital Design, Autumn2015 33

Quick guestion

 Which logic gate Is represented by the
following VHDL code?

if (a /= b) then
q<="'1l";

else
q<= "'0";

end if;

‘) > .
b . b

Alt: A
IE1204 Digital Design, Autumn2015

34

Processes in VHDL

e A architecture in VHDL can contain
multiple processes

* Processes are executed In parallel

e A process Is written as a sequential
program

IE1204 Digital Design, Autumn2015

35

Moore-machine processes

e For a Moore machine, we create three
processes

— Next state decoder
— Output decoder
— State register

IE1204 Digital Design, Autumn2015

36

Internal signals

 Moore machine contains internal signals
for
— Current state
— Next state

 These signals are declared in the
architecture description

IE1204 Digital Design, Autumn2015 37

Bottle dispenser vending machine
in VHDL

 We use bottle dispenser vending machine as

an example

 We describe its system controller in VHDL

COIN_PRESENT

GT_1 EURO

COIN EQ_1 EURO

SYSTEM

RECEIVER |1 1 Furo

CONTROL

DEC_ACC

CLR_ACC

DROP

DROP_READY DROP BOTTLE

RETURN_10 CENT

CHANGER ReaDy | COIN RETURN

IE1204 Digital Design, Autumn2015

38

Vending Machine:

Reset

No Coin
registered?

Yes

Flow diagram

Total <1 € / R — >
otal :

Total = 1 €/\

Eject
bottle

Reset
sum

ﬁ)tab €1

Return
10 Cent

v

Decrease

sum

IE1204 Digital Design, Autumn2015

39

Vending Machine: State diagram

 The state diagram
contains all information
required to generate an
Implementation

COIN_PRESENT

T IEURO. /{9 e Assumption: D flip-flops
0L o1 | euro are_used as state
_ register
CHANGER _
READY « 7 states: 3 flip-flops are
RETURN_10 CENT N eed ed
CHANGER READY The state variable order is

ABC, i.e. state (c) Is
A=0,B=1C=1

CLR_ACC DEC_ACC

IE1204 Digital Design, Autumn2015 40

Vending Machine: Logic design

Next state Output
; decoder . decoder ;
Input-signals s Compmation mmm)| Flip-flops l (Combmaﬂonﬂ Output-signals
al circuit) al circuit)
Ck — 7
COIN PRESENT Da 5 A 4 N
LT | FURO |
== L DROP
EQ L FURO RETURN 10 CENT
GT_L FURQ | IDg 5 L
DROP_READY | Next D Output
CHANGER_READY | State > Decoder |lcir acc
| Decoder b | DEC_ACC
Cc C K
B LI1° T g Y,
C | b
Clk—

At next step, we develop the logic for the next state (D4, Dg, D) and outputs

IE1204 Digital Design, Autumn2015 41

Decoder: Next state -

D, AB

COIN_PRESENT W . A
COIN_PRESENT 01 0 - 1
110 (®+ 0 0

(=) : EQ_1_EURO
(>): GT_1_EURO

CHANGER
READY

RETURN_10 CENT

D, = AB(EQ)+AB(GT)+AC

CLR_ACC DEC_ACC

IE1204 Digital Design, Autumn2015 45_2

Decoder: Next state -

(a COIN_PRESENT Dy AB

COIN_PRESENT 00 01 110
’ COIN_PRESENT 01 0 ; 10
Gon 1| CP (=) o [C1

OIN_PRESENT
LT_I_EURO ﬁ (=) : EQ_1 EURO
CP : COIN_PRESENT

CHANGER
READY

RETURN_10 CENT

D, = AB(EQ)+BC+BC(CP) + ABC

43

CLR_ACC DEC_ACC

IE1204 Digital Design, Autumn2015

Decoder: Next state-

00 01 11 10

CP : COIN_PRESENT
DR: DROP_READY
CR: CHANGER_READY

CHANGER
READY

RETURN_10 CENT

D. = AC(CP)+BC(DR)

+ Ag(CR) +BC

CLR_ACC DEC_ACC

IE1204 Digital Design, Autumn2015 44

Decoder:[Output signhals J

CHANGER_READY

' |©€R ACC | (DEC ACO

e Output decoder is
trivial, since its value
IS directly dependent
on the current state

Qe DROP = ABC
CHANGER _
’ ek CLR_ACC =ABC -
& RETURN_10_CEND RETURN_10_ CENT= ABC

DEC_ACC = ABC

IE1204 Digital Design, Autumn2015

45

Unused state?!

AB
o 00 01 11 10

0 a - d f
C b C e g
O = (OlO)ABC

! —_—
DROP||

READ

RETURN_10_CENT

DROP|READY CHANGER_READY

A"=A-B-EQ+A-B-GT+A-C = A" (010),s =1-1-EQ+1-1-GT +0-1=EQ+GT
B*=A-B-EQ+B-C+B-C-CP+A-B-C = B*(010),,c =1-1-EQ+1-1+...=1
C*=A-C-CP+B-C-DR+A-B-CR+B-C
= C'(010),5. =1-1.CP+1-1-DR+0-0-CR+0-0=CP + DR

A*B*C* =-1-=010,110,011,111—> @, d, c, e

IE1204 Digital Design, Autumn2015 46

Vending Machine: Logic Design

COIN PRESENT Da = A
LT_|EURO A RO
EQLEURQ | RETURN_I0_CENT
GT_L_EURQO | Dy A L
DROP_READY | Next D Output
CHANGER_READY | State P> Decoder | cir_acc
Decoder DEC ACC
A DC IC NN N
B D JJ
C >
Clk—

Now you can design "Next State Decoder” and "Output Decoder” by knowing
the logic function of D,, D, D, and logic funtion of outputs "Drop”,
"Return_10_ Cent”, "CLR_ACC”, and "DEC_ACC".

IE1204 Digital Design, Autumn2015 47

Vending Machine in VHDL.:
Entity

 Entity describes the system ENTITY Vending Machine 1S

as a 'black box ' PORT (
-- Inputs
» Entity describes the interface coin_present : IN std_logic;
to the outside world gt_1 euro > IN std_logic;
i eq_1 euro - IN std_logic;
o All mputs and outputs are It 1 _euro - IN std_logic:
described drop_ready - IN std_logic;
° Apart from the input and changer_ready : IN std _logic;
output signals, block diagram reset_n - IN std_logic;
: clk - IN std _logic;
needs signals for __ outputs
— Clock dec_acc - OUT std_logic;
— Reset (active low) clr_acc - OUT std_logic;
drop : OUT std _logic;

return_10 cent :

END Vending_ Machine;

OUT std_logic);

IE1204 Digital Design, Autumn2015

48

Vending Machine in VHDL.:
Architecture

e The architecture describes the function
of the machine

e \We define

— Internal signals for the current and next
states

— three processes for next-state decoder,
output decoder and state reqister

IE1204 Digital Design, Autumn2015 49

Vending Machine in VHDL.:
Internal Signals

 We need to create a type for internal signals

 Since we describe the states, we use an enumerated
type with the values a, b, ¢, d, e, f, g

« We declare one variable for the current state
(current_state) and one for the next state
(next_state)

ARCHITECTURE Moore FSM OF Vending Machine 1S
TYPE state type IS (a, b, c, d, e, T, 0);
SIGNAL current_state, next state: state type;

BEGIN -- Moore FSM

IE1204 Digital Design, Autumn2015 50

Vending Machine in VHDL.:
Internal Signals

« If we do not specify a state assignment, synthesis tool will select it

 We can force a certain encoding using attributes (NOTE: Attributes
are dependent on synthesis tool and thus are not portable!)

ARCHITECTURE Moore FSM OF Vending Machine 1S
TYPE state type IS (a, b, c, d, e, T, 0);
—-—- We can use state encoding according to BV 8.4.6
—-— to enforce a particular encoding (for Quartus)
ATTRIBUTE enum_encoding : string;

ATTRIBUTE enum_encoding OF state type : TYPE IS '000
001 011 110 111 100 101';

SIGNAL current _state, next state . state type;
BEGIN -- Moore FSM

IE1204 Digital Design, Autumn2015 51

Vending Machine in VHDL.:
Process for Next-State Decoder

Next state Output
Input-signals | decoder mmm)| Flip-flops decoder s Output-signals

(Combination (Co_m bi_nation
al circuit) al circuit)

Clk —

e Next-State-Decoder Is described as a
Process

e Sensitivity list contains all the inputs that

‘activate' the process

NEXTSTATE : PROCESS (current state, coin present,
gt 1 euro, eq_1 euro, It 1 euro, drop ready,
changer ready) — Sensitivity List

BEGIN -- PROCESS NEXT_STATE

IE1204 Digital Design, Autumn2015

Vending Machine in VHDL.:
Process for Next-State-Decoder

Next state Output
Input-signals - mmmy{decoder mmm)| Flip-flops ‘(’gg%d;;aﬂon jmmm) Output-signals

(Combination mBoil
al circuit) > al circuit)

Clk —

e We now use a CASE statement to describe the transitions to the
next state from each state conditions
CASE current_state 1S

WHEN a => IF coin_present = "1" THEN
next state <= b;
ELSE
next_state <= a;
END IF; Q.
5 - DROA]
WHEN b => IF coin_present = "0" THEN READ
next State <= C - RETURN_10_CENT
ELSE a DROP|READY CHANGER_READY

next_state <= b; —
END I1F; CLR_ACC DEC_ACC

IE1204 Digital Design, Autumn2015 53

Vending Machine in VHDL.:
Process for Next-State-Decoder

 We can simplify the description by specifying a default value for
the next state

next_state <= current_state;
CASE current_state IS
WHEN a => IF coin_present = "1" THEN
next state <= b;
END IF;
WHEN b => IF coin_present = "0" THEN
next_state <= c;
END IF;

It is iImportant to we specify all options for next_state signal. Otherwise we
may implicitly set next_state <= next_state which generates a loop.

IE1204 Digital Design, Autumn2015 54

Vending Machine in VHDL.:
Process for Next-State-Decoder

 We terminate the CASE statement with a WHEN OTHERS
statement. Here we specify that we should go to the state a if

we end up in an unspecified state

WHEN g => next_state <= cC;
WHEN OTHERS => next state <= a;
END CASE;

END PROCESS NEXTSTATE;

IE1204 Digital Design, Autumn2015 55

Vending Machine in VHDL.:
Process for Output-Decoder

e
Input-signals mmmmp{9SC09e" || Fiip-flops ‘(’gg;dbei:]aﬂonﬂ Output-signals
natio
a > al circui

e QOutput decoder Is described as a
separate process

e Sensitivity list contains only the current
state because the outputs are directly
dependent on it

IE1204 Digital Design, Autumn2015 56

Vending Machine in VHDL.:
Process for Output-Decoder

OUTPUT : PROCESS (current _state)

BEGIN -- PROCESS OUTPUT
drop <= "0%;
clr_acc <= "07;
dec_acc <= "0";

return_10 cent <= "0%;
CASE current_state IS

WHEN d => drop <= "1%;
WHEN e => clr_acc <= "1%;
WHEN f => return_10 cent <= "1°7;
WHEN g => dec_acc <= "17;
WHEN OTHERS => NULL;

END CASE;

END PROCESS OUTPUT;

IE1204 Digital Design, Autumn2015

Vending Machine in VHDL.:
Process for State register

Next state Output
Input-signals - |decoder mmm)| Flip-flops decoder e Output-signals

(Combination (Co_m bi_nation
al circuit) al circuit)
Clk —

o State register is modeled as a synchronous process

with asynchronous reset (active low)
CLOCK : PROCESS (clk, reset_n)

BEGIN -- PROCESS CLOCK
IF reset n = "0 THEN -- asynchronous reset (active low)
current_state <= a;
ELSIF clk“EVENT AND clk = "1 THEN -- rising clock edge
current_state <= next_state;
END IF;

END PROCESS CLOCK;

IE1204 Digital Design, Autumn2015

58

Quick guestion

* Which state machine is represented by this VHDL code?

case state is
when 0 =>
if (k = '"1"'") then
nextstate <= 1;
else
nextstate <= 2;
end if;
when 1 => nextstate <= 2;
when others => nextstate <= 0;
end case;

Alt: A

k=1

IE1204 Digital Design, Autumn2015 59

Mealy machine

State

NIEAT SRR STATE REGISTER OUTPUT

DECODER
Input DECODER Output

signals signals

Clk——

* |n a Mealy machine, output signals depend
on both the current state and inputs

IE1204 Digital Design, Autumn2015 60

Mealy machine in VHDL

A Mealy machine can be modeled In the
same way as the Moore machine

* The difference Is that output decoder Is
also dependent on the input signals

* Process which models outputs needs to

have Input signals in the sensitivity list
as well!

IE1204 Digital Design, Autumn2015 61

More on VHDL

 The sample code for bottle dispenser
available on the course website

* Look at the study of "VHDL synthesis"
on the course website

 Both Brown/Vranesic- and Hemert-book
Includes code samples

IE1204 Digital Design, Autumn2015 62

Summary

 PLD, PAL, CPLD
c FPGA
 ASIC — gate array and standard cell

 Modeling sequential circuits with VHDL
* Next lecture: BV pp. 584-640

IE1204 Digital Design, Autumn2015 63

