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Programmable Logic Devices

 Programmable logic devices (PLDs)
were Iintroduced In the 1970s

 They are based on a structure with an
AND-OR array that makes it easy to
Implement a sum-of-products
expression

IE1204 Digital Design, Autumn2015



Structure of a PLD
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Programmable Logic Array (PLA)
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Programmable Array Logic (PAL)
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Combinatorial and register outputs

e |n earlier PLDs there were
— combinatorial outputs
— register outputs (outputs with a flip-flop)

 For each circuit the number of combinational
and register outputs was fixed

* To increase flexibility, macrocells were
Introduced

— one can choose if an output Is
combinatorial or has a flip-flop
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Macrocells in a PLD
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A programmable
multiplexer can be
used to select the
type of output
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Programming of PLDs
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Complex PLD's (CPLD)

PLDs were quite small (PALCE 22V10
had 10 flip-flops)

To program larger functions, structures
consisting of several PLD-like blocks
were developed called Complex PLD
(CPLD)
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Programming of CPLDs via the
JTAG Interface

« Modern CPLDs (and FPGAS) can be
programmed by downloading circuit
description (programming information)
via a cable

 Download usually uses a standard port
called JTAG port (Joint Test Action
Group)
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Programming via the JTAG port

You can program the
chips when they are
soldered to the circuit
board - using the

(a) CPLD in a Quad Flat Pack (QFP) package prog ram mer you Can
select which chip you

To computer

want to program

/ through the JTAG port

Printed
circuit board

(b) JTAG programming
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Field Programmable Gate Arrays

« CPLDs are based on the AND-OR array

* It is difficult to make really large
functions using CPLDs

« FPGASs use a different concept based
on logic blocks
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Structure of an FPGA
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Look-up-tables (LUT)

Programmable

cells ~

0/1 \
0/1 0

1
0/1 1 /0
0/1 0

Two-input LUT

A LUT with n inputs can
realize all
combinational functions
with up to n inputs.

The usual size of LUT
In an FPGAiIsn=4
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Logic Block in a FPGA

e Alogic block in an FPGA often consists of a
LUT, a flip-flop and a multiplexer to select
register output

In, LUT
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Select
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Flip-flop

D Q
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Programming the LUT's and the
connection matrix in an FPGA

Blue cross: switch
IS programmed

Black cross: switch
IS not programmed
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DE2 University Board

e DE2 Board

— Cyclone Il EP2C35

FPGA (Datorteknik-
course)

— 4 Mbytes of flash
memory

— 512 Kbytes of static
RAM

— 8 Mbytes of SDRAM
— Several I/0O-Devices
— 50 MHz oscillator
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Cyclone Il
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Cyclone Il Family

Table 1-1. Cyclone Il FPGA Family Features
Feature EP2C5 | EP2C8 (2) | EP2C15 (7) | EP2C20 (2) | EP2C35 EP2C50 EP2C70
LEs 4,608 8,256 14,448 18,752 33,216 50,528 68,416
M4K RAM blocks (4 26 36 e b2 105 129 250
Kbits plus
512 parity bits
Total RAM bits 119,808 165,888 239,616 239,616 483,840 594,432 | 1,152,000
Embedded 13 18 26 26 35 86 150
multipliers (3)
PLLs 2 2 4 4 4 4 4
Maximum user 158 182 315 315 475 450 622
I/O pins
N—/

(3) Total Number of 18x18 Multipliers DE2
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Stratix Il Family

Table 1-1. Stratix Ill FPGA Family Features

. x -
Dovies) I aLms | LEs | gt | Hia | AR EmLc::cllgd I:_IAIRE E_ﬁn‘ Jlﬁu:lflig:rls PLLs
RAM Khits | Khits(?) | Kbits(3) | (FIR Mode)
Stratix Il | EP3SL50 | 19K | 47.5K | 108 6 950 1,836 297 | 2,133 216 4
Logic EP3SL70 | 27K | 67.5K | 150 6 |1.350 | 2214 422 | 2636 288 4
Family FP3SI 110 | 43K | 107 5K | 275 12 121501 4203 672 4 875 288 8
EP3SL150 | 57K | 142.5K | 355 16 | 2,850 | 5,499 891 6,390 384 8 DE3 Board
EP3SL200 | 80K | 200K | 468 36 | 4,000 | 9.396 1,250 | 10,646 576 12
EP3SE260 | 102K | 255K | 864 | 48 | 57100 | 14,688 | 1,594 | 16,282 768 12
EP3SL340 | 135K | 337.5K | 1,040 | 48 | 6,750 | 16,272 | 2,109 | 18,381 576 12
Stratix Il | EP3SE50 | 19K | 47.5K | 400 12 | 950 5,328 297 | 5,625 384 4
Enhanced | £p3spso | a2k | sok | 495 | 12 | 1600 | 6,183 500 | 6683 672 8
Family EP3SE110 | 43K | 107.5K | 639 16 | 2,150 | 8,055 672 8,727 896 8
EP3SE260 | 102K | 255K | 864 | 48 | 57100 | 14,688 | 1,594 | 16,282 768 12
(1)
22

IE1204 Digital Design, Autumn2015



Multiple processors can be
Implemented on an FPGA

| H
Nios Il
H
Nios Il
N

* Nine Il is a so-called 'soft-
processor' (32-bit) that
can be implemented on
Altera’'s FPGAs

 Today's FPGAs are so
large that multiple
processors can fit on a
single FPGA chip

Very powerful multiprocessor
systems can be created on an

FPGA!
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ASICs

 An ASIC (Application Specific Integrated
Circuit) is a circuit which is manufactured at a
semiconductor factory

* |n a full custom integrated circuit, the entire
circuit iIs customized

* |n an ASIC, some design steps have already
been made to reduce design time and cost

 There are several types of ASICs:
— Gate array ASICs
— Standard cell ASIC
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ASICs: Gate Array

e In a gate array ASIC, gates (or transistors) are
already on silicon
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ASICs: Gate Array

 We only need
to create the
links between
the inputs and
outputs of
gates

) YL
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ASICs: Standard Cells

« A standard cell can for example be AND, OR, Invert,
XOR, XNOR, buffer, or a storage function as flipflop
or latch.
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FPGA, Gate Array, Standard Cell

Comparison

Initial Cost Cost per part | Performance | Fabrication
Time
FPGA Low High Low Short
| |
Gate Array
(ASIC)
Standard Cell | High Low High Long
(ASIC)
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Design Trade-Offs

1 Design Time

Standard Cell

[
»

Performance
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VHDL: Sequential circuits
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Moore machine

State

NEXT STATE STATE REGISTER OUTPUT

DECODER
Input CO DECODER | () 1oy

signals signals

Clk——

* |n a Moore-type machine output signals
depend only on the current state
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How to model a state machine in
VHDL?

 |n a Moore machine, we have three
blocks

— Next state decoder
— Output decoder
— State register

 These blocks are executed in parallel

IE1204 Digital Design, Autumn2015
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Quick guestion

 Which logic gate Is represented by the
following VHDL code?

g <= a and (not b);
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Quick guestion

 Which logic gate Is represented by the
following VHDL code?

if (a /= b) then
q<="'1l";

else
q<= "'0";

end if;

‘) > .
b . b

Alt: A
IE1204 Digital Design, Autumn2015
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Processes in VHDL

e A architecture in VHDL can contain
multiple processes

* Processes are executed In parallel

e A process Is written as a sequential
program

IE1204 Digital Design, Autumn2015
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Moore-machine processes

e For a Moore machine, we create three
processes

— Next state decoder
— Output decoder
— State register

IE1204 Digital Design, Autumn2015
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Internal signals

 Moore machine contains internal signals
for
— Current state
— Next state

 These signals are declared in the
architecture description
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Bottle dispenser vending machine
in VHDL

 We use bottle dispenser vending machine as

an example

 We describe its system controller in VHDL

COIN_PRESENT

GT_1 EURO

COIN EQ_1 EURO

SYSTEM

RECEIVER |1 1 Furo

CONTROL

DEC_ACC

CLR_ACC

DROP

DROP_READY DROP BOTTLE

RETURN_10 CENT

CHANGER ReaDy | COIN RETURN

IE1204 Digital Design, Autumn2015
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Vending Machine:

Reset

No Coin
registered?

Yes

Flow diagram

Total <1 € / R — >
otal :

Total = 1 €/\

Eject
bottle

Reset
sum

ﬁ)tab €1

Return
10 Cent

v

Decrease

sum
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Vending Machine: State diagram

 The state diagram
contains all information
required to generate an
Implementation

COIN_PRESENT

T IEURO. /{9 e Assumption: D flip-flops
0L o1 | euro are_used as state
_ register
CHANGER _
READY « 7 states: 3 flip-flops are
RETURN_10 CENT N eed ed
CHANGER READY  The state variable order is

ABC, i.e. state (c) Is
A=0,B=1C=1

CLR_ACC DEC_ACC
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Vending Machine: Logic design

Next state Output
; decoder . decoder ;
Input-signals s Compmation mmm)| Flip-flops l (Combmaﬂonﬂ Output-signals
al circuit) al circuit)
Ck — 7
COIN PRESENT Da 5 A 4 N
LT | FURO |
== L DROP
EQ L FURO RETURN 10 CENT
GT_L FURQ | IDg 5 L
DROP_READY | Next D Output
CHANGER_READY | State > Decoder |lcir acc
| Decoder b | DEC_ACC
Cc C K
B LI1° T g Y,
C | b
Clk—

At next step, we develop the logic for the next state (D4, Dg, D) and outputs

IE1204 Digital Design, Autumn2015 41



Decoder: Next state -

D, AB

COIN_PRESENT W . A
COIN_PRESENT 01 0 - 1
110 (®+ 0 0

(=) : EQ_1_EURO
(>): GT_1_EURO

CHANGER
READY

RETURN_10 CENT

D, = AB(EQ)+AB(GT)+AC

CLR_ACC DEC_ACC
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Decoder: Next state -

(a COIN_PRESENT Dy AB

COIN_PRESENT 00 01 110
’ COIN_PRESENT 01 0 ; 10
Gon 1| CP (=) o [C1

OIN_PRESENT
LT_I_EURO ﬁ (=) : EQ_1 EURO
CP : COIN_PRESENT

CHANGER
READY

RETURN_10 CENT

D, = AB(EQ)+BC+BC(CP) + ABC

43

CLR_ACC DEC_ACC

IE1204 Digital Design, Autumn2015




Decoder: Next state-

00 01 11 10

CP : COIN_PRESENT
DR: DROP_READY
CR: CHANGER_READY

CHANGER
READY

RETURN_10 CENT

D. = AC(CP)+BC(DR)

+ Ag(CR) +BC

CLR_ACC DEC_ACC
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Decoder:[Output signhals J

CHANGER_READY

' |©€R ACC | (DEC ACO

e Output decoder is
trivial, since its value
IS directly dependent
on the current state

Qe DROP = ABC
CHANGER _
’ ek CLR_ACC =ABC -
& RETURN_10_CEND RETURN_10_ CENT= ABC

DEC_ACC = ABC

IE1204 Digital Design, Autumn2015
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Unused state?!

AB
o 00 01 11 10

0 a - d f
C b C e g
O = (OlO)ABC

! —_—
DROP||

READ

RETURN_10_CENT

DROP|READY CHANGER_READY

A"=A-B-EQ+A-B-GT+A-C = A" (010),s =1-1-EQ+1-1-GT +0-1=EQ+GT
B*=A-B-EQ+B-C+B-C-CP+A-B-C = B*(010),,c =1-1-EQ+1-1+...=1
C*=A-C-CP+B-C-DR+A-B-CR+B-C
= C'(010),5. =1-1.CP+1-1-DR+0-0-CR+0-0=CP + DR

A*B*C* =-1-=010,110,011,111—> @, d, c, e
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Vending Machine: Logic Design

COIN PRESENT Da = A
LT_|EURO A RO
EQLEURQ | RETURN_I0_CENT
GT_L_EURQO | Dy A L
DROP_READY |  Next D Output
CHANGER_READY | State P> Decoder | cir_acc
Decoder DEC ACC
A DC IC NN N
B D JJ
C >
Clk—

Now you can design "Next State Decoder” and "Output Decoder” by knowing
the logic function of D,, D, D, and logic funtion of outputs "Drop”,
"Return_10_ Cent”, "CLR_ACC”, and "DEC_ACC".
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Vending Machine in VHDL.:
Entity

 Entity describes the system  ENTITY Vending Machine 1S

as a 'black box ' PORT (
-- Inputs
» Entity describes the interface coin_present : IN std_logic;
to the outside world gt_1 euro > IN std_logic;
i eq_1 euro - IN std_logic;
o All mputs and outputs are It 1 _euro - IN std_logic:
described drop_ready - IN std_logic;
° Apart from the input and changer_ready : IN std _logic;
output signals, block diagram reset_n - IN std_logic;
: clk - IN std _logic;
needs signals for __ outputs
— Clock dec_acc - OUT std_logic;
— Reset (active low) clr_acc - OUT std_logic;
drop : OUT std _logic;

return_10 cent :

END Vending_ Machine;

OUT std_logic);

IE1204 Digital Design, Autumn2015
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Vending Machine in VHDL.:
Architecture

e The architecture describes the function
of the machine

e \We define

— Internal signals for the current and next
states

— three processes for next-state decoder,
output decoder and state reqister
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Vending Machine in VHDL.:
Internal Signals

 We need to create a type for internal signals

 Since we describe the states, we use an enumerated
type with the values a, b, ¢, d, e, f, g

« We declare one variable for the current state
(current_state) and one for the next state
(next_state)

ARCHITECTURE Moore FSM OF Vending Machine 1S
TYPE state type IS (a, b, c, d, e, T, 0);
SIGNAL current_state, next state: state type;

BEGIN -- Moore FSM
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Vending Machine in VHDL.:
Internal Signals

« If we do not specify a state assignment, synthesis tool will select it

 We can force a certain encoding using attributes (NOTE: Attributes
are dependent on synthesis tool and thus are not portable!)

ARCHITECTURE Moore FSM OF Vending Machine 1S
TYPE state type IS (a, b, c, d, e, T, 0);
—-—- We can use state encoding according to BV 8.4.6
—-— to enforce a particular encoding (for Quartus)
ATTRIBUTE enum_encoding : string;

ATTRIBUTE enum_encoding OF state type : TYPE IS '000
001 011 110 111 100 101';

SIGNAL current _state, next state . state type;
BEGIN -- Moore FSM
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Vending Machine in VHDL.:
Process for Next-State Decoder

Next state Output
Input-signals | decoder mmm)| Flip-flops decoder s Output-signals

(Combination (Co_m bi_nation
al circuit) al circuit)

Clk —

e Next-State-Decoder Is described as a
Process

e Sensitivity list contains all the inputs that

‘activate' the process

NEXTSTATE : PROCESS (current state, coin present,
gt 1 euro, eq_1 euro, It 1 euro, drop ready,
changer ready) — Sensitivity List

BEGIN -- PROCESS NEXT_STATE
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Vending Machine in VHDL.:
Process for Next-State-Decoder

Next state Output
Input-signals - mmmy{decoder mmm)| Flip-flops ‘(’gg%d;;aﬂon jmmm) Output-signals

(Combination mBoil
al circuit) > al circuit)

Clk —

e We now use a CASE statement to describe the transitions to the
next state from each state conditions
CASE current_state 1S

WHEN a => IF coin_present = "1" THEN
next state <= b;
ELSE
next_state <= a;
END IF; Q.
5 - DROA]
WHEN b => IF coin_present = "0" THEN READ
next State <= C - RETURN_10_CENT
ELSE a DROP|READY CHANGER_READY

next_state <= b; —
END I1F; CLR_ACC DEC_ACC
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Vending Machine in VHDL.:
Process for Next-State-Decoder

 We can simplify the description by specifying a default value for
the next state

next_state <= current_state;
CASE current_state IS
WHEN a => IF coin_present = "1" THEN
next state <= b;
END IF;
WHEN b => IF coin_present = "0" THEN
next_state <= c;
END IF;

It is iImportant to we specify all options for next_state signal. Otherwise we
may implicitly set next_state <= next_state which generates a loop.
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Vending Machine in VHDL.:
Process for Next-State-Decoder

 We terminate the CASE statement with a WHEN OTHERS
statement. Here we specify that we should go to the state a if

we end up in an unspecified state

WHEN g => next_state <= cC;
WHEN OTHERS => next state <= a;
END CASE;

END PROCESS NEXTSTATE;
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Vending Machine in VHDL.:
Process for Output-Decoder

e
Input-signals mmmmp{9SC09e" || Fiip-flops ‘(’gg;dbei:]aﬂonﬂ Output-signals
natio
a > al circui

e QOutput decoder Is described as a
separate process

e Sensitivity list contains only the current
state because the outputs are directly
dependent on it
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Vending Machine in VHDL.:
Process for Output-Decoder

OUTPUT : PROCESS (current _state)

BEGIN -- PROCESS OUTPUT
drop <= "0%;
clr_acc <= "07;
dec_acc <= "0";

return_10 cent <= "0%;
CASE current_state IS

WHEN d => drop <= "1%;
WHEN e => clr_acc <= "1%;
WHEN f => return_10 cent <= "1°7;
WHEN g => dec_acc <= "17;
WHEN OTHERS => NULL;

END CASE;

END PROCESS OUTPUT;
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Vending Machine in VHDL.:
Process for State register

Next state Output
Input-signals - |decoder mmm)| Flip-flops decoder e Output-signals

(Combination (Co_m bi_nation
al circuit) al circuit)
Clk —

o State register is modeled as a synchronous process

with asynchronous reset (active low)
CLOCK : PROCESS (clk, reset_n)

BEGIN -- PROCESS CLOCK
IF reset n = "0 THEN -- asynchronous reset (active low)
current_state <= a;
ELSIF clk“EVENT AND clk = "1 THEN -- rising clock edge
current_state <= next_state;
END IF;

END PROCESS CLOCK;

IE1204 Digital Design, Autumn2015
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Quick guestion

* Which state machine is represented by this VHDL code?

case state is
when 0 =>
if (k = '"1"'") then
nextstate <= 1;
else
nextstate <= 2;
end if;
when 1 => nextstate <= 2;
when others => nextstate <= 0;
end case;

Alt: A

k=1
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Mealy machine

State

NIEAT SRR STATE REGISTER OUTPUT

DECODER
Input DECODER Output

signals signals

Clk——

* |n a Mealy machine, output signals depend
on both the current state and inputs
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Mealy machine in VHDL

A Mealy machine can be modeled In the
same way as the Moore machine

* The difference Is that output decoder Is
also dependent on the input signals

* Process which models outputs needs to

have Input signals in the sensitivity list
as well!
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More on VHDL

 The sample code for bottle dispenser
available on the course website

* Look at the study of "VHDL synthesis"
on the course website

 Both Brown/Vranesic- and Hemert-book
Includes code samples
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Summary

 PLD, PAL, CPLD
c FPGA
 ASIC — gate array and standard cell

 Modeling sequential circuits with VHDL
* Next lecture: BV pp. 584-640
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