
LAB 3: BAYESIAN LEARNING AND BOOSTING

NILS BORE & MARTIN HJELM

October 2, 2015

1. Introduction

In this lab you will implement a Bayes Classifier and the Adaboost algorithm that
improves the performance of a weak classifier by aggregating multiple hypotheses gen-
erated across different distributions of the training data. Some predefined functions for
visualization and basic operations are provided, but you will have to program the key
algorithms yourself.

In this exercise we will work with four well known machine learning datasets for classifi-
cation and see how different modeling assumptions affect the classification. Each dataset
is provided as a csv file datasetnameX.txt for the feature vectors and the labeling in
a file datasetnameY.txt. You will be provided with functions that will import the
datasets into Python. The dataset we will work with are the following:

1.1. Wine. The wine dataset contains the results of chemical analysis of wines grown
in the same region in Italy but from three different cultivators. The dataset contains
178 instances, where the feature vector consists of 13 different attributes derived from
the analysis. Our task is to classify instances as to belonging to one of the cultivators.

1.2. Iris. This dataset contains 150 instances of 3 different types of iris plants. The
feature consists of 4 attributes describing the characteristics of the Iris. Our task is to
classify instances as belonging to one of the types of Irises.

1.3. Olivetti Faces. This dataset contains 400 different images of the faces of 40 differ-
ent persons, each person is represented by 10 images. The images were taken at different
times with varying lightning and facial expressions against a dark homogeneous back-
ground. They are all black and white, and 64x64. Our task is to classify instances as
belonging to one of the people.

1.4. Vowel. This dataset contains 528 instances of utterances of 11 different vowels.
Our task is to classify instances as belonging to one of the types of the vowels.

More information on the different datasets can be found at https://archive.ics.uci.edu/ml/.
1

LAB 3: BAYESIAN LEARNING AND BOOSTING 2

2. Code skeleton & Python packages

You will use Python for this lab assignment. You have the option to use either pure
Python or a Jupyter notebook. There are code skeletons available for both in lab3.py

and lab3.ipynb respectively. At the beginning of both is a short description of Jupyter
and how to install it.

You will need the following Python packages for this exercise: numpy, scipy, matplotlib
and sklearn.

3. Bayesian Learning

3.1. Bayesian model fitting. In Bayesian model fitting we wish to infer the model
parameters, α, given the data, D. Using Bayes’ theorem we can write the posterior for
α as,

P (α|D) =
P (D|α)P (α)

P (D)
. (1)

Here P (D|α) is the likelihood of the data under our model with the given parameters.
P (α) is the prior probability of the parameters and P (D) is a normalizing constant, the
model evidence. In words this becomes,

Posterior =
Likelihood× Prior

Evidence
(2)

3.2. Bayesian Classification. In a classification scenario we want to classify a set
of points as belonging to one of a given set of classes, C. To classify a point x∗ as
belonging to the class k we want to compute the class posterior for each of the classes.
A straightforward application of Bayes’ theorem gives,

p(k|x∗) =
pk(x

∗|k) p(k)∑
l∈C

pl(x∗|l)
, (3)

where pk(x
∗|k) is the class conditional density, p(k) is the prior probability of a point

belonging to class k and the sum in the denominator is a normalizing constant. To
classify a point we pick the class that has max posterior probability.

3.3. Modeling. In this lab we will assume that the density that best models the data
for each of the classes, indexed by k, is multivariate Gaussian,

pk(x|µk,Σk) =
1√

(2π)d|Σk|
exp

(
−1

2
(x− µk)TΣk

−1(x− µk)
)

(4)

LAB 3: BAYESIAN LEARNING AND BOOSTING 3

where x is a d-dimensional row vector, µk is the mean vector, Σk is the covariance
matrix and |Σk| the determinant.

In a fully Bayesian treatment we would place a prior over the parameters and marginal-
ize them out, but to simplify things we instead choose to find the parameters by the
maximum likelihood (ML) estimate. We also assume that all of the data points are inde-
pendent and identically distributed (i.i.d). We write the likelihood for the ML-estimate
as,

arg max
µk,Σk

L(µk,Σk|Dk) = pk(Dk|µk,Σk) ∝
N∏

{i|ci=k}

pk(xi|µk,Σk), (5)

where Dk are the points in D belonging to class k.

A less complicated form of the Gaussian to work with is the log transform, the log-
likelihood,

ln(pk(x|µk,Σk)) = −1

2
ln(|Σk|)−

1

2
(x− µk)TΣ−1k (x− µk)−

d

2
ln(2π) (6)

To maximize log likelihood we take the derivate with respect to both µk and Σk and
equate to zero,

d ln(L)

dµk
= 0,

d ln(L)

dΣk
= 0. (7)

After some manipulation we arrive at the following expressions for the ML-estimate of
µk and Σk. ci denotes the class of the i:th training instance:

µk =

∑N
{i|ci=k} xi

N
(8)

Σk =
1

Nk

N∑
{i|ci=k}

(xi − µk)(xi − µk)T (9)

3.4. Assignment 1. Write a function, mlParams(X,labels), that computes the ML-
estimates of µk and Σk for the different classes in the dataset. X here is a set of row
vectors, and labels are the class labels for each of the data points. The function
should return a C × d-array mu that contains the class means, a d× d× C-array sigma

that contains the class covariances. The covariance should be computed using matrix
multiplication and not by applying a library function.

Use the provided function, genBlobs(), that returns Gaussian distributed data points
together with class labels, to generate some test data. Compute the ML-estimates for
the data and plot the 95%-confidence interval using the function plotGaussians.

LAB 3: BAYESIAN LEARNING AND BOOSTING 4

3.5. Classification. The next step is to program the discriminant function based on
the log posterior, δk(x) = ln(p(k|x)) for predicting the class of an unseen instance, x∗.
Using Eq. 3 and the log transform we can write the discriminant function as,

δk(x
∗) = ln(p(k|x∗)) = ln(pk(x

∗|k)) + ln(p(k))− ln
∑
l∈C

pl(x
∗|l)

= −1

2
ln(|Σk|)−

1

2
(x∗ − µk)TΣ−1k (x∗ − µk)−

d

2
ln(2π) + ln(p(k))− ln

∑
l∈C

pl(x
∗|l)

= −1

2
ln(|Σk|)−

1

2
(x∗ − µk)TΣ−1k (x∗ − µk) + ln(p(k)) + C.

(10)

When classifying new data points, we can ignore C when comparing the values given by
Eq. 10 as it will not vary with our test data or class assignments.

We compute the class prior, p(k), as the frequency of the occurrences of the different
classes,

p(k) =
Nk

N
. (11)

Observe that Σ−1k should never be computed explicitly as finding the inverse is time
consuming and inexact, instead solve the equation system, Σky = x− µk.

Note that Σk most of the time is symmetric positive definite (if not you can add a
diagonal matrix 1E-6I to it). This means that Σk can be factorized into Σk = LLT by
Cholesky factorization, where L is an upper triangular matrix. The factorization can be
used in computing the product containing the inverse covariance, Σ−1k , in the following
manner,

Solve :Σky = x− µk
Decompose : Σk = LLT

Solve : Lv = x− µk
Solve : LTy = v

(12)

Solving for an upper triangular matrix should roughly half the solution time. In Python
the code for the generic problem Ax = b is:

L = np.linalg.cholesky(A)

y = np.linalg.solve(L,b)

x = np.linalg.solve(L.H,y)

Using the factorization we can also write determinant as:

LAB 3: BAYESIAN LEARNING AND BOOSTING 5

ln(|Σk|) = ln(|LLT |) = ln(|L||L|) = ln(

n∏
i

l2i,i) = 2

n∑
i

ln li,i (13)

3.6. Assignment 2.

(1) Write a function computePrior(labels) that estimates and returns the class
prior in X.

(2) Write a function classify(X,prior,mu,sigma,covdiag) that computes the dis-
criminant function values for all classes and data points, and classifies each point
to belong to the max discriminant value. The function should return an N × 1
matrix containing the predicted class value for each point.

(3) In this lab we are interested in the modeling assumption’s influence on the clas-
sification results. We will study two different cases, one where we assume all
features are uncorrelated (naive Bayes) and one where they are correlated. This
means that we will have two different covariances matrices when classifying,
one diagonal and one non-diagonal. You should therefore add a boolean
parameter covdiag to the classify function that makes it possible to choose
classification based on the full or the diagonal covariance matrix. When the co-
variance matrix is diagonal we can skip the Cholesky factorization and compute
the inverse and the log determinant sum directly.

3.7. Assignment 3. We now have all functions we need for doing the training and
classification. Use the provided function testClassifier to test the accuracy for each
of the datasets. testClassifier runs a loop that does the following things:

0. Uses the provided random partitioning function to split the dataset into a train-
ing and test dataset.

1. Trains your classifier on the training partition.

2. Evaluates the performance of the classifier on the test partition.

Run testClassifier for each of the datasets for the two assumptions of feature depen-
dence by setting the function parameter covdiag to True or False.

Answer the following questions:

(1) Does the feature independence assumption have any effect on the classification
accuracy for the different datasets?

(2) If so why does some of the datasets have more difference than others?

(3) When can an independence assumption be reasonable and when not?

(4) How does the standard deviation differ for the two assumptions and what does
that imply?

LAB 3: BAYESIAN LEARNING AND BOOSTING 6

4. Boosting

4.1. Boosting the Bayes Classifier. Boosting aggregates multiple hypotheses gen-
erated by the same learning algorithm invoked over different distributions of training
data into a single composite classifier. Boosting generates a classifier with a smaller
error on the training data as it combines multiple hypotheses which individually have a
larger error (but lower than 50%). Boosting requires unstable classifiers whose learning
algorithms are sensitive to changes in the training examples.

The idea of boosting is to repeatedly apply a weak learning algorithm on various dis-
tributions of the training data and to aggregate the individual classifiers into a single
overall classifier. After each iteration the distribution of training instances is changed
based on the error the current classifier exhibits on the training set. The weight ωi of an
instance (xi, ci) specifies its relative importance, which can be interpreted as if the train-
ing set would contain ωi identical copies of the training example (xi, ci). The weights ωi
of correctly classified instances (xi, ci) are reduced, whereas those of incorrectly classified
instances are increased. Thereby the next invocation of the learning algorithm will focus
on the incorrect examples.

In order to be able to boost the Bayes classifier, the algorithm for computing the MAP
parameters and the discriminant function has to be modified such that it can deal with
fractional (weighted) instances. Assume, that ωi is the weight assigned to the i:th train-
ing instance. Without going into a straightforward detailed derivation the Equations 8-9
for the MAP parameter with weighted instances become:

µk =

∑
{i|ci=k} ωixi∑
{i|ci=k} ωi

(14)

Σ2
k =

∑
{i|ci=k} ωi (xi − µk) (xi − µk)

T∑
{i|ci=k} ωi

(15)

4.2. Assignment 4: Extend the old mlParams function to mlParams(X, labels, W)

that handles weighted instances. Again X is N × d matrix of feature vectors, labels a
N×1-vector containing the corresponding labels and W is a N×1 vector of weights. The
signature should look like

def mlParams(X, labels, W)

...

return (mu, sigma)

Here, the return parameters mu and sigma are identical to the old mlParams. The func-
tion computes the maximum posterior parameters µk and Σk for a dataset D according
to Equations 14-15. Assume the usual data format for the first two parameters. Test
your function mlParams(X, labels, W), for a uniform weight vector with ω = 1/N .
The MAP parameters should be identical to those obtained with the previous version of
mlParams.

LAB 3: BAYESIAN LEARNING AND BOOSTING 7

4.3. The Adaboost algorithm. The Adaboost algorithm repeatedly invokes a weak
learning algorithm, in our case mlParams and after each round updates the weights of
training instances (xi, ci). In the following, t will denote the iteration round of the
algorithm. Adaboost proceeds in the following manner (repeating steps 1-4 several
times).

0. Initialize all weights uniformly ω1
i = 1/N .

1. Train weak learner using distribution ωt.

2. Get weak hypothesis ht and compute its error εt with respect to the weighted dis-
tribution ωt . In case of the Bayes classifier a single hypothesis ht is represented
by (µtk,Σ

t
k).

εt =

N∑
i=1

ωti
(
1− δ(ht(xi), ci)

)
where ht(xi) is the classification of instance xi made by the hypothesis ht. The
function δ(ht(xi), ci) is 1 if ht(xi) = ci and 0 otherwise.

3. Choose αt = 1
2

(
ln(1− εt)− ln(εt)

)
.

4. Update weights according to

ωt+1
i =

ωti
Zt
×
{
e−α

t
if ht(xi) = ci

eα
t

if ht(xi) 6= ci

where Zt is a normalization factor ensuring that
∑

i ω
t+1
i = 1.

The overall classification of the boosted classifier of an unseen instance x is obtained by
aggregating the votes casted by each individual Bayes classifier ht = (µtk,Σ

t
k). As we

have higher confidence in classifiers that have a low error (large αt), their votes count
relatively more. The final classification H(x) is the class cmax that receives the majority
of votes

H(x) = cmax = arg max
ci

T∑
t=1

αtδ(ht(x), ci) (16)

4.4. Assignment 5:

(1) Modify computePrior to have the signature computePrior(labels, W), taking
the boosting weights ω into account.

(2) Implement the Adaboost algorithm and apply it to the Bayes classifier. Design a
function trainBoost(X, labels, T) that generates a set of boosted hypothesis,
where the parameter T determines the number of hypotheses. Use the modified
computePrior(labels, W). The signature in Python should look like

def trainBoost(X, labels, T):

...

return (priors, mus, sigmas, alphas)

LAB 3: BAYESIAN LEARNING AND BOOSTING 8

(3) Design a function

def classifyBoost(X, priors, mus, sigmas, alphas):

...

return c

that classifies the instances in data by means of the aggregated boosted classifier
according to Equation 16. The resulting classifications are returned in the vector
c.

Observe: The return parameter alphas (T × 1) holds the classifier vote weights αt.
mus, sigmas and priors contain lists of length T with MAP parameters and priors
for every classifier. c will be a N × 1 vector. Note that you have to compute and
store all the hypothesis generated with mlParams(data, labels, W) for each of the
different distributions ωt+1 and later aggregate their classifications to obtain the overall
classification.

Compute the classification accuracy of the boosted classifier on some data sets using
testClassifier and compare it with those of the basic classifier (see Assignment 3):

(1) Is there any improvement in classification accuracy? Why/why not?

(2) Plot the decision boundary of the boosted classifier and compare it with that
of the basic. What differences do you notice? Is the boundary of the boosted
version more complex?

(3) Can we make up for not using a more advanced model in the basic classifier
(e.g. independent features) by using boosting?

You may use the function plotBoundary provided in the code skeleton to plot the
decision boundary for different datasets and parameters.

5. The End

If you have followed the instructions you should be done now. Please report your findings
carefully by saving your plots and classification results. Use these to reason about the
questions in the lab description.

