
Solutions to Exam in EL2745 Principles of Wireless Sensor Networks, October 24, 2014

1. Probability of error at the message level

(a) Rayleigh fading is a statistical model that is often used to describe the
effect of a propagation environment on a radio signal, such as that used
by wireless sensors. It is most applicable when there is no dominant
propagation along a line of sight between the transmitting and receiv-
ing node. Because there is no direct ray component, Rayleigh fading is
often classified as the worst case fading type. Rayleigh fading models
assume that the complex envelope of the received signal is the sum of
many random complex components arriving from different paths and
its amplitude follows the Rayleigh distribution.

(b) Let P(γ) be the probability of error for a digital modulation as a func-
tion of Eb/N0, γ, in the Gaussian channel. Let the channel amplitude
be denoted by the random variable α, and let the average SNR normal-
ized per bit be denoted by γ? = E[α2]Eb/N0. Then to obtain P(e) for a
Rayleigh fading channel, P(γ) must be integrated over the probability
that a given γ is encountered:

P(e) =
∫

∞

0
P(γ)p(γ)dγ,

For Rayleigh fading,

p(γ) =
1
γ?

e−γ/γ?.

In the case of coherent BPSK, the integration can actually be computed
yielding

P(e) =
1
2

[
1−

√
γ?

1+ γ?

]
.

At high SNR such as OQPSK systems, the approximation (1+x)1/2∼
1+ x/2 can be used, giving

P(e)∼ 1
4γ?

compared with P(e) = Q(
√

2γ?) for the Gaussian channels.

(c) Given the bit error probability P(e), the probability of successfully
receiving a message is

p = (1−P(e)) f .

For Rayleigh fading, from previous section we have

P(e)≈ 1
4SNR

.
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(d) To have a message reception probability of at least p > 0.35, it is re-
quired that (

1− 1
4SNR

) f

> 0.910

By substituting f = 10, and

SNR =
αEb

N0d2 =
10
d2

in inequality above we obtain(
1− d2

40

)10

> (0.9)10 =⇒ d ≤ 2.

2. Analysis of CSMA based MAC in WSNs

(a) The protocol is supported in the “beacon-less” modality of IEEE 802.15.4.

(b) The sensors nodes use slotted CSMA scheme with fixed contention
size M. Nodes sense the channel and if it is free they enter to the con-
tention round, where each node draws a random slot number in [1,M]
using uniform distribution and sets its counter with this integer num-
ber. In successive slots times of duration tslot each contender counts
down until when its counter expires then it senses the channel and if
there is no transmission in the channel it will send the packet imme-
diately at beginning of the next slot. Assume td is the required time
to transmit the data packet. tslot is determined by physical layer pa-
rameters like propagation time of the packet (it also called vulnerable
time) which is defined by the distance between the nodes. Each con-
tention round will finish by a packet transmission that might be either
successful or collided. Collision happens if at least two nodes draw
the same minimum slot number, otherwise the transmission would be
successful.

(c) Consider the contention round with length M and total number of sen-
sors N. Let xn be the selected slot of node n. Let ps(m) be the probabil-
ity of having a successful transmission at slot m which happens when
a node selects slot m and rest of the nodes select greater slots. Ps is the
probability of success over the entire contention round and is obtained
by the summation over ps(m)

Ps =
M

∑
m=1

ps(m) =
M

∑
m=1

N

∑
n=1

Prob{xn = m, x j > m ∀ j 6= n}

=
M

∑
m=1

(
N
1

)
1
M

(
1− m

M

)N−1
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(d) Let pc(m) be the probability of collision at slot m then

pc(m) =Prob{xn ≥ m, ∀n} ·
[
1−Prob{xn = m, x j > m∀ j 6= n|xn ≥ m ∀n}

−Prob{xn ≥ m+1|xn ≥ m, ∀n}
]

=
1

MN

[
(M−m+1)N− (N +M−m) · (M−m)N−1

]
,

which is essentially one minus the probability of having successful
or idle slots. Also the probability of having collision after contention
round can be formulated in a similar way as success case. i.e.,

Pc =
M

∑
m=1

pc(m) = 1−Ps.

3. Shortest path routing in WSNs
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Figure 1: A sample topology of the WSN. Node 1 is the sink and link quali-
ties(PRR) are depicted on each arcs

(a) Given the PRR of each link, the mean transmission number required
per successful packet delivery on the link (i, j) is

E[T X ] =
∞

∑
t=1

tPRR(i, j)t(1−PRR(i, j))t−1 =
1

PRR(i, j)

(b) Denote ETX[xi] as the expected number of transmissions required for
node xi to send a packet to the sink. Also, denote Ni and Pi as the
neighbors set and parent of node i, respectively. Then given PRR(i, j)
as the packet reception rate from i to j, One can formulate ETX[xi] as

ETX[xi] = min
j∈Ni

{
ETX[x j]+

1
PRR(i, j)

}
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and Pi = {x j} where x j is the neighbor that minimizes the ETX[xi].
ETX[x1] = 0 where x1 is the sink. Starting from the sink, nodes put
their ETX equal to infinity. Then sink propagates its ETX value to
one hop neighbors, they update their ETX and broadcast their values.
Whenever a node receives a ETX message from a neighbor, it checks
if the value differs from the previous reported value. If so they update
their ETX and parent node (if it happens) and broadcast their ETX. It
can be proved that this algorithm constructs a MST and converges in
a couple of iterations (as long as PRR values remain unchanged).

(c) Denote by P the set of nodes whose shortest path to the destination
node is known, and denote by D j the current shortest distance from
node j to the destination node. Note that only when node j belongs to
the set P can we say D j is the true shortest distance. Choose node 1 as
the destination node. Initially, set P = {1} , D1 = 0, and D j = ∞ for
j 6= 1.

(i) Update D j for j 6= 1 using the following equation

D j = min[D j,d j1] .

(ii) Find i such that
Di = min

j/∈P
[D j]

update P := P∪{i}.
(iii) Update D j for j /∈ P by the following equation

D j := min[D j,Di +d ji]

in which i is the i obtained in (ii).
(iv) Go back and compute steps (ii) and (iii) recursively until P con-

tains all the nodes in the network. The resulting D j is the shortest
distance from node j to node 1.

(d) According to Figure 1 nodes update their ETX as following

ETX[1] = 0

node 3:

ETX[3] = min
{

1
0.9

,1+ETX[2]
}
= min{1.1,∞}= 1.1, P3 = {1}.

node 2:

ETX[2] =min
{

1
0.8

,1+ETX[3]
}
=min{1.25,2.1}= 1.25, P2 = {1}.

Note that here we assumed node 2 receives the ETX[3] before com-
puting its value.
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node 4:

ETX[4] = min
{

1
0.5

+ETX[3],
1

0.6
+ETX[5],

1
0.7

+ETX[6]
}

= min{3.1, ∞, ∞}= 3.1, P4 = {3}.

node 5:

ETX[5] = min
{

1
0.8

+ETX[2],
1

0.6
+ETX[4],

1
0.5

+ETX[6]
}

= min{2.5, 4.77, ∞}= 2.5, P5 = {2}.

node 6:

ETX[6] = min
{

1
0.7

+ETX[4],
1

0.5
+ETX[5]

}
= min{4.53, 4.5}= 3.5, P6 = {5}.

in next iteration all the ETX values will remain unchanged and the
algorithm converges. The set of P ’s builds the topology.

4. Collaborative multilateration

(a) Solve the equations

x2 +(y−3)2 =(3.5−∆)2 ,

(x−4)2 + y2 =(4.5−∆)2 ,

(x−4)2 +(y−3)2 =(5.5−∆)2 .

We have the position of U is (0,0) with ∆ = 0.5.

(b) From the problem, we see that both U and V are placed on a common
axis. Then we have U = (0,0.5), V = (0,−0.5) directly.

(c) Clearly Û0 = (0,1) and V̂0 = (0,−1).

(d) The squared distances from U to nodes A, C, and V are respectively
1.25, 1.25, and 1, while the squared distances from V to B, D, and U
are 1.25, 1.25, and 1. Then for the first calculation we have rA = rC = 1
and rv = 2 so that

A =

 1 0
−1 0
0 −2

 , z =

 1−
√

1.25
1−
√

1.25
2−
√

1

 .
resulting in the system AT Adu = AT z :[

2 0
0 4

][
δxu
δyu

]
=

[
0
−2

]
,
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which gives Û1 = (0,1−0.5) = (0,0.5). In the next set, rB = rD = 1,
rU = 1.5, so that

A =

 1 0
−1 0
0 1.5

 ,z =
 1−

√
1.25

1−
√

1.25
1.5−

√
1

 .
The result is V̂1 = (0,−1+ 0.333) = (0,−0.667). Iterations can con-
tinue now for Û2 using A, B, and V̂1 and so forth. Successive iterations
produce results closer to the true ones. In general, for collaborative
multilateration to converge a variety of constraints on the topology
must be satisfied, and the order of the computations is important. How-
ever, if there is a relatively high density of nodes with known position
these constraints are almost always satisfied without explicit checking
being required; bad positions can be discarded through recognition
that the values are diverging in some neighborhood.

5. Networked Control System

(a) Since τ< h, at most two controllers samples need be applied during the
k-th sampling period: u((k− 1)h) and u(kh). The dynamical system
can be rewritten as

ẋ(t) = Ax(t)+Bu(t), t ∈ [kh+ τ,(k+1)h+ τ)

y(t) =Cx(t) ,

u(t+) =−Kx(t− τ), t ∈ {kh+ τ, k = 0,1,2, . . .}

where u(t+) is a piecewise continuous and changes values only at kh+
τ. By sampling the system with period h, we obtain

x((k+1)h) = Φx(kh)+Γ0(τ)u(kh)+Γ1(τ)u((k−1)h)
y(hk) =Cx(kh) ,

where

Φ = eAh = eah ,

Γ0(τ) =
∫ h−τ

0
eAsBds =

b
a

(
ea(h−τ)−1

)
,

Γ1(τ) =
∫ h

h−τ

eAsBds =
b
a

(
eah− ea(h−τ)

)
.

given that A = a,B = 1,C = 1.

(b) Let z(kh) = [xT (kh),uT ((k− 1)h)]T be the augmented state vector,
then the augmented closed loop system is

z((k+1)h) = Φ̃z(kh) ,
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where

Φ̃ =

[
Φ−Γ0(τ)K Γ1(τ)
−K 0

]
.

Using the results obtained in (a), we can obtain

Φ̃ =

[
eah− b

a

(
ea(h−τ)−1

)
K b

a

(
eah− ea(h−τ)

)
−K 0

]
.

(c) The characteristic polynomial of this matrix is

λ
2−
(

eah− b
a

(
ea(h−τ)−1

))
K +

Kb
a

(
eah− ea(h−τ)

)
.

Thus when the max |λ|> 1, the closed loop system becomes unstable.

(d) We use the following result to study the stability of the system:

Theorem 1 Consider the system given in Fig. 2. Suppose that the
closed-loop system without packet losses is stable. Then

• if the open-loop system is marginally stable, then the system is
exponentially stable for all 0 < r ≤ 1.
• if the open-loop system is unstable, then the system is exponen-

tially stable for all

1
1− γ1/γ2

< r ≤ 1 ,

where γ1 = log[λ2
max(Φ−ΓK)], γ2 = log[λ2

max(Φ)]

Here we have

Φ = eAh = eah ,

Γ =
∫ h

0
eAsBds =

b
a

(
eah−1

)
.

Thus, the stability of this system depends on the values of K,h,a.
When the conditions are not satisfied, from a control theory point of
view we may choose different K for controller, or different sampling
time h for the system to make the system stable. Instead, from a net-
working point of view, we may change the protocol parameters to so
have a packet loss probability that meets the stability conditions.
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