
Asynchronous sequence circuits

William Sandqvist william@kth.se

• An asynchronous sequence machine is
a sequence circuit without flip-flops

• Asynchronous sequence machines are
based on combinational gates with
feedback

Upon analysis it is assumed : Only one
signal at a time in the gate circuit can
change its value at any time

Golden rule

William Sandqvist william@kth.se

Asynchronous state machine

William Sandqvist william@kth.se

Asynchronous state machines are used when it is
necessary to maintain a state, but when there is
no clock available.

• All flip-flops and latches are themselfes
asynchronous state machines
• They are useful to synchronize events in
situations where metastability is/can be a
problem

SR-latch with NOR-gates

William Sandqvist william@kth.se

R

S Q
Y y
Delay

ideal gates
(delay = 0)

To analyze the behavior of an asynchronous circuit
one assumes ideal gates and summarizes all the
delay to a single block with delay Δ.

Analysis of sequence circuits

William Sandqvist william@kth.se

R

S Q
Y y

By having a delay block we can consider
y as the present state
Y as next state

State function

William Sandqvist william@kth.se

R

S Q
Y y

)(ySRY ++=

Thus, we can develop a functional relationship of
the next state Y depending on the input signals S
and R and the current state y

State table

William Sandqvist william@kth.se

)(ySRY ++=

Present Next state
state SR = 00 01 10 11
y Y Y Y Y
0 0 0 1 0
1 1 0 1 0

)11(10111
)11(01011
)10(10101
)10(01001
)01(10110
)01(11010
)00(10100
)00(00000
)(

++=
++=
++=
++=
++=
++=
++=
++=
++= ySRYRSy

From statefunction to
truth table

Or, as in the exercise - using the
Karnaugh map …

BV uses
binary code

(at exercise, analysis of SR)

William Sandqvist william@kth.se

QRRSQSRQSRQSRQ +=+⋅=+⋅=++=+)()(

Present
state Q

Next state Q+
Input signals SR

00 01 11 10
0 0 0 0 1
1 1 0 0 1

For binary order

Stable states

William Sandqvist william@kth.se

• Since we do not have flip-flops, but only combinational
circuits, a state change can result in additional state changes

• A state is
– stable if Y(t) = y(t + Δ)
– unstable if Y(t) ≠ y(t + Δ)

Present Next state
state SR = 00 01 10 11
y Y Y Y Y
0 0 0 1 0
1 1 0 1 0

yY = stable

Exitation table

William Sandqvist william@kth.se

The asynchronous coded state table is called
Excitation table
The stable states (those with next state =
present state) will be ”encircled”

Present Next state
state SR = 00 01 10 11
y Y Y Y Y
0 0 0 1 0
1 1 0 1 0

yY =

Terminology

William Sandqvist william@kth.se

When dealing with asynchronous
sequential circuits a different
terminology is used

• The asynchronous uncoded state
table is called flow table

Flowtable and Statediagram
(Moore type)

William Sandqvist william@kth.se

Present Next state Output
state SR = 00 01 10 11 Q

A A A B A 0

B B A B A 1

10
00

11
01
00

10

A 0 ⁄ B 1 ⁄

11
01

SR

Flowtable and Statediagram
(Mealy type)

Present Next state Output, Q
state SR = 00 01 10 11 00 01 10 11

A A A B A 0 0 0

B B A B A 1 1 –

–

–

10/1
00/1

11/0
01/0
00/0

10/ –

A B

01 – ⁄
11 – ⁄

SR/Q

Don’t care (‘-’) has been selected for the output decoder. It does not matter if
the output is changed before or after the state transition (= simpler gate array).

?1 ?1

?0 ?0

William Sandqvist william@kth.se

Asynchronous Moore
compatible

William Sandqvist william@kth.se

• Asynchronous sequential circuits have similar
structure as synchronous sequential circuits
• Instead of flip-flops one have a "delay block"

Asynchronous Mealy
compatible

William Sandqvist william@kth.se

• Asynchronous sequential circuits have similar
structure as synchronous sequential circuits
• Instead of flip-flops one have a "delay block"

Analysis of asynchronous circuits

William Sandqvist william@kth.se

The analysis is done in the following steps :
1) Replace the feedbacks in the circuit with delay element
 ∆i. Input signal to delay-element forms the next state Yi,
while the output signal yi represents the present state.
2) Find out the next-state and output expressions
3) Set up the corresponding excitationstable
4) Create a flow table by replacing the encoded states by
symbolic states
5) Draw a state diagram if needed

First: D-latch state function

William Sandqvist william@kth.se

 Q 1D

C1

Q D

 C

latchfollowC /=

Q D
 C

Y y

CyCDY ⋅+⋅=

D-latch statefunction. Functional relationship between the
current state y and next state Y

follow latch

Exemple: Master-Slave-flip-flop

William Sandqvist william@kth.se

D

Clk

Q

Q

D

C

Q
y s y m

Master Slave

Q

D

Clk

Q

Q

CyCyY
CyCDY

sms

mm

⋅+⋅=

⋅+⋅=

State
expression:

Master-slave D flip-flop is constructed from two
asynchronous D-latches.

Exitationstable

William Sandqvist william@kth.se

Present Next state
state CD = 00 01 10 11 Output
y m y s Y m Y s Q

00 0 0 0 0 0 0 10 0

01 00 00 0 1 11 1

10 11 11 00 1 0 0

11 1 1 1 1 01 1 1 1

From the expressions one can directly derive the
excitation table (if you can keep it all in your head?)

CyCyY
CyCDY

sms

mm

⋅+⋅=

⋅+⋅=

or with help from K-map …

William Sandqvist william@kth.se

11110
11111
101
100

10110100

mY

sm yy
DC

1110
111111
1101

00
10110100

sY

sm yy
DC

0010111110
0111111111
0111000001
0010000000
10110100

smYY

sm yy
DC

DCCym Cys

CyCyYCyCDY smsmm ⋅+⋅=⋅+⋅=

Cym

Change rows and colums to get the
binary order as in BV

Flow table

William Sandqvist william@kth.se

We define four states S1, S2, S3, S4, which gives us
the flow table

Present Next state Output
state CD = 00 01 10 11 Q

S1 S 1 S 1 S 1 S3 0

S2 S1 S1 S 2 S4 1

S3 S4 S4 S1 S 3 0

S4 S 4 S 4 S2 S 4 1

Flow table

William Sandqvist william@kth.se

Remember: Only one input can be changed at a
time
• Thus, some transitions will never be able to
happen!

Present Next state Output
state CD = 00 01 10 11 Q

S1 S 1 S 1 S 1 S3 0

S2 S1 S1 S 2 S4 1

S3 S4 S4 S1 S 3 0

S4 S 4 S 4 S2 S 4 1

Flowtable – impossible transitions

William Sandqvist william@kth.se

Present Next state Output
state CD = 00 01 10 11 Q

S1 S 1 S 1 S 1 S3 0

S2 S1 S1 S 2 S4 1

S3 S4 S4 S1 S 3 0

S4 S 4 S 4 S2 S 4 1

State S3
Only stable state for S3 is when input is 11
Only one input at a time can change → possible changes are 11 → 01,
11 → 10

• Theese combinations leaves S3!
• Input 00 in S3 is not possible!
• Input 00 is therefore don’t care!

Flowtable – impossible transitions

William Sandqvist william@kth.se

State S2
Only stable state for S2 is when input is 10
Only one input at a time can change → possible changes are 10 → 11, 10
→ 00

• Theese combinations leave S2!
• Input 01 in S2 is not possible!
• Input 01 is therefore don’t care!

Present Next state Output
state CD = 00 01 10 11 Q

S1 S 1 S 1 S 1 S3 0

S2 S1 S 2 S4 1

S3 S4 S1 S 3 0

S4 S 4 S 4 S2 S 4 1

–
–

D-flip-flop state diagram

William Sandqvist william@kth.se

x1
0x 10

11

S2 1 ⁄ S4 1 ⁄
10

11 x0
0x

11

S1 0 ⁄ S3 0 ⁄
10

0x 0x

CD

Don’t care is
here denoted
by x

Don’t care can be used to simplify the circuit (the next
state decoder).

00
01
10

00
01
11

William Sandqvist william@kth.se

Synthesis of asynchronous circuits

William Sandqvist william@kth.se

The synthesis is carried out in the
following steps :

1) Create a state diagram acording to the functional
description
2) Create a flow table and reduce the number of states if
possible
3) Assign codes to the states and create the
excitationstable
4) Develop expressions (transfer functions) for next state
and outputs
5) Design a circuit that implements the above expressions

Exemple: serial paritety circuit

William Sandqvist william@kth.se

x y
Odd
parity

t

Input x Output y
y = 1 if the number of pulses at
input x is an odd number.

In other words, an "every other time" circuit …

1 0 1
odd odd even

Create state diagram

William Sandqvist william@kth.se

x y
odd
parity

t A B

D C

0 1

0 1

0=x
1=x

1=x

0=x

0=x
1=x

1=x

0=x

A/0
B/1

C/1
D/0

A/0

1 0
x

y

Create state table

William Sandqvist william@kth.se

x y
Odd
parity

t

Next StatePres
state

X=0 1

Q

A A B 0

B C B 1

C C D 1

D A D 0

Next StatePres
state

X=0 1

Q

A A B 0

B C B 1

C C D 1

D A D 0

What is a good state encoding?

William Sandqvist william@kth.se

Next StatePres
state

X=0 1

Q

y2y1 Y2Y1

00 00 01 0

01 10 01 1

10 10 11 1

11 00 11 0

Bad encoding (HD=2!)

• Suppose
X = 1 Y2Y1 = 11
 • Then
X → 0 → Y2Y1 = 00?

11 → 10!
11 → 01 → 10! ? → 00

We will never reach 00?

00, 01, 10, 11 - binary code?

What is a good state encoding?

William Sandqvist william@kth.se

• Suppose
X = 1 Y2Y1 = 10
• Then
X → 0 → Y2Y1 = 00

10 → 00

Next StatePres
state

X=0 1

Q

y2y1 Y2Y1

00 00 01 0

01 11 01 1

11 11 10 1

10 00 10 0

Good encoding (HD=1)

00, 01, 11, 10 – gray code

State encoding

William Sandqvist william@kth.se

• In asynchronous sequential circuits,
it is impossible to guarantee that the two state variables
changes values simultaneously
– Thus, a transition 00 → 11 could result in

• A transition 00 → 01 → ???
• A transition 00 → 10 → ???

• To ensure the function all state transitions MUST have the
Hamming distans 1
– The Hamming distans is the number of bits that differs in two

binary numbers
• Hamming distans between 00 and 11 is 2
• Hamming distans between 00 and 01 is 1

Richard Hamming

Good state encoding

William Sandqvist william@kth.se

• Procedure to obtain good codes:
1) Draw the transition diagram along the edges in

hypercubes (Gray code) formed by the codes
2) Remove any crossing lines by
 a) change the position of two adjacent nodes
 b) utilize available unused codes

 (exploit unstable conditions)
 c) introduce hypercube of more dimensions

Poor coding of the parity circuit

William Sandqvist william@kth.se

A=00 B=01

C=10 D=11

x=1

x=1

x=0 x=0

Poor encoding –
Hamming Distance = 2
(crossing lines)

Next StatePres
state

X=0 1

Q

y2y1 Y2Y1

00 00 01 0

01 10 01 1

10 10 11 1

11 00 11 0

A

B

C

D

The poor state encoding 00 01

10 11

cube

Good coding of the parity circuit

William Sandqvist william@kth.se

Good encoding
Hamming Distance = 1
(no crossing lines)

Next StatePres
state

X=0 1

Q

y2y1 Y2Y1

00 00 01 0

01 11 01 1

11 11 10 1

10 00 10 0

A

B

C

D

00 01

10 11

cube The good state encoding

A=00 B=01

D=10 C=11

x=1

x=1

x=0 x=0

William Sandqvist william@kth.se

Problems with non-stable states

William Sandqvist william@kth.se

C=10

A=00 B=01

01

01

00 10

Bad encoding

00

At the transition between B to C (or C to B) is the Hamming distans 2 (10↔01)!
Chance to get stuck in an unspecified state (with the code 11)!

? 11

Ex. an other circuit:

Present Next state Output
state r 2 r 1 = 00 01 10 11 g 2 g 1

A 00 A B C 00

B 01 A B C B 01

C 10 A B C C 10

–

Solution to unstable state

William Sandqvist william@kth.se

• Solution: The introduction of a transition state
that ensure that you do not end up in an undefined
state!

Good encoding

C=10

A=00 B=01

01

01

00
10

00
01

10

Present Next state
state r 2 r 1 = 00 01 Output

y 2 y 1 Y 2 Y 1 g 2 g 1

A 00 0 0 01 00

B 01 00 0 1 01
- 11 01 -- –
C 10 00 11 10

11

0 1

–

–
1 0

10

10

11
 10

1 0

Transition state

01 → 11 → 10
10 → 11 → 01

Transition state

Extra states – more dimensions

William Sandqvist william@kth.se

A B

D C
C F

A B

D E

G
A B

D C
G

E F

If there is no way redraw the chart to HD = 1 you may add states by increasing
the dimension of the hypercube. You then drag the transitions through the then
available non-stable states.

• One can increase the number of dimensions
in order to implement secure state
transitions

Extra states – more dimensions

William Sandqvist william@kth.se

• It's easier to draw a "flat" 3D cube
(perspective, is then from the front)

000 100

010
110

101

011 111

001

011 111

000 100

010 110

001 101

Karnaugh maps

William Sandqvist william@kth.se

Next StatePres
state

X=0 1

Q

y2y1 Y2Y1

00 00 01 0

01 11 01 1

11 11 10 1

10 00 10 0

0 1 1 0

0 0 1 1

y2y1
x 00 01 11 10
0
1

0 1 1 0

1 1 0 0

y2y1
x 00 01 11 10
0
1

0 1

0 1

y1
y2
0
1

0 1

Groupings in red are to avoid Hazard (see later in course)!

2121

2

xyyyyx

Y

++

=

1122

1

yxyyyx

Y

++

=

1Q y=

The complete circuit

William Sandqvist william@kth.se

0 1 1 0

0 0 1 1

y2y1
x 00 01 11 10
0
1

0 1 1 0

1 1 0 0

y2y1
x 00 01 11 10
0
1

0 1

0 1

y1
y2
0
1

0 1

y2

y1
Q

x

21212 xyyyyxY ++=

11221 yxyyyxY ++=

1Q y=

x y
Odda
parity

t

Q

(easier with D-flip-flop)

William Sandqvist william@kth.se

x

We have made an "every other time" earlier in the course.
Then with a D flip-flop. But now it was more exiting!

x y
Odda
parity

t

Q

What is Hazard?

William Sandqvist william@kth.se

• Hazard is a term that means that there is a danger
that the output is not stable, but it may “flicker” at
certain input combinations.

• Hazard occurs if there is a different distance from
the various inputs to an output, there will be an
signal-race.

• In order to counteract this, one must add the prime
implikants to cover up the dangerous transition.

Exemple of Hazard – MUX

William Sandqvist william@kth.se

0 1 1 0

0 0 1 1

x 00 01 11 10
0
1 Q

x

y1

y2

Q

x

y1

y2

At the transition from xy2y1=(111) → (011) the output Q could flicker,
because the road from x to Q are longer via the upper AND-gate than the
lower (race).

MORE ABOUT HAZARD IN THE NEXT LECTURE!

21212 xyyyyxY ++=

extra delay! extra delay!

William Sandqvist william@kth.se

State Minimizing

William Sandqvist william@kth.se

Asynchronous state machines has many
"unspecified" positions in the flow table
that can be exploited to minimize the
number of states.

The probability that less number of states
leads to a simpler implementation is high
in the case of asynchronous circuits!

State Minimizing

William Sandqvist william@kth.se

Two steps:

Equivalency - equivalent state. The same steps as the
state minimization of synchronous sequential circuits,
full flexibility remain.

Compatibility - compatible states will be different for
Moore or Mealy compliant realization, the choices you
make now affect the future flexibility.

State Minimizing

William Sandqvist william@kth.se

• Procedure for minimizing the number of states
1. Forming equivalence groups.

To be in the same group, the following shall apply:
• Outputs must have the same value
• Stable states must be in the same place (column)
• Don’t cares for next state muste be at the same place (column)

2. Minimize equivalence groups (state-reduction)
3. Form merger diagram different for Mealy or Moore.
4. Merge compatible states in groups. Minimize the number of groups

simultaneously. Each state may only be part of one group.
5. Construct the reduced flow table by merging rows in the selected

groups
6. Repeat step 3-5 to see if more minimizations may be done

Candy Machine (BV p. 610)

William Sandqvist william@kth.se

• Candy Machine has two inputs:
– N: Nickel (5 cent)
– D: Dime (10 cent)

• A candy costs 10 cent
• The machine does not return any money if there are

15 cent in the machine (one candy is returned)
• Output z is active when there is enough money for a

candy

State diagram, Flow table

William Sandqvist william@kth.se

A
0

00=ND

B
0

N
C
1

D

D
0

E
1

N
F
1

D

D

00=ND

N

00=ND

00=ND

00=ND

Pres
state

Next State Q
X=00 01 10 11

A A B C - 0

B D B - - 0

C A - C - 1

D D E F - 0

E A E - - 1

F A - F - 1

(X = ND, Q = z)

A flow table that only has one stable state on each
row is called a primitive flowtable.

• You can’t insert two coins at the same time!
• No ” double changes” of input signals!

N
D

State Minimizing

William Sandqvist william@kth.se

A
0

00=ND

B
0

N
C
1

D

D
0

E
1

N
F
1

D

D

00=ND

N

00=ND

00=ND

00=ND

State Minimization means that
two states may be equivalent,
and if so, replaced by one state
to simplify the state diagram,
and network.
One can easily see that state C
and F could be replaced by one
state, as a candy always be
ejected after a Dime regardless
of previous state.

N
D

Form/minimize equivalence
groups

William Sandqvist william@kth.se

1. Form equivalence groups. To be in the same group, the
following applies:

• Outputs must have the same value
• Stable states must be at same place (column)
• Don’t cares for next state must be at same place

(column)
2. Minimize equivalence groups (state reduction).

• Equivalence groups

William Sandqvist william@kth.se

The states is divided in blocks after the
output value.
ABD has output 0, CEF has output 1.
P1 = (ABD)(CEF)
Stable states must be for same input
signal (column), don’t care must be for
same column.

AD has a stable state for 00. B has a
stable for 01. CF has a stable state for
10. E has a stable for 01. AD and CF has
don’t care for corresponding input
signals.

P2 = (AD)(B)(CF)(E)

Pres
state

Next State Q
X=00 01 10 11

A A B C - 0

B D B - - 0

C A - C - 1

D D E F - 0

E A E - - 1

F A - F - 1

(X = ND, Q = z)

Merge equivalence groups

William Sandqvist william@kth.se

Two rows could be ”merged” if it does not conflikt their
successor states

P2=(AD)(B)(CF)(E)
P3=(A)(D)(B)(C)(E)
P4=P3.

Rows C and F can be merged with a new name C, while A
and D which has successors in different groups not can
merge.

Next State QPres
state X=00 01 10 11

A A B C - 0

B D B - - 0

C A - C - 1

D D E C - 0

E A E - - 1

Resulting flow table C,F00 → (AD), (AD)
C,F01 → -, -
C,F10 → (CF), (CF)
C,F11 → -, -

A,D00 → (AD), (AD)
A,D01 → (B),(E)
A,D10 → (CF), (CF)
A,D11 → -, -

Compatibility Groups

William Sandqvist william@kth.se

3. Form merger charts either for Mealy or Moore
4. Merge compatible states into groups. Minimize the

number of groups simultaneously. Each state may only be
part of a group.

5. Construct the reduced flow table by merging rows in the
selected groups

6. Repeat steps 3-5 to see if more minimizations can be
done

Merging rules

William Sandqvist william@kth.se

• Two states are "compatible", and can be
merged if the following applies
1. at least one of the following conditions apply to all

input combinations
• both Si and Sj has the same successor state, or
• both Si and Sj are stable, or
• The successor to Si or Sj are both unspecified

2. Then if you want to construct a Moore-compatible
statemachine it also apply
• both Si and Sj has the same output value (this is not

necessary when you construct a Mealy-compatible
statemachine)

Merger diagram

William Sandqvist william@kth.se

Next State QPres
state X=00 01 10 11

A A B C - 0

B D B - - 0

C A - C - 1

D D E C - 0

E A E - - 1

Resulting flowtable

C

A

E

B D

Compatibily graph

Mealy-compatible: In state A (X = 00) the
output is 0, in state C output is 1

Moore-compatible

Each line will be a point
in the Compatibility
graph.

C(1): A-C-
E(1): AE--

C(1): A-C-
A(0): ABC-

• When there are there are several
possibilities …

William Sandqvist william@kth.se

An illustrative example (BV 9.8)

William Sandqvist william@kth.se

Primitive flowtable

P2= (A)(G)(BL)(C)(D)(E)(F)(HK)(J) P3=P2

equivalence classes
The same output, same position for
stable states and do not care conditions
(AG) (BL) (HK)

P1= (AG)(BL)(C)(D)(E)(F)(HK)(J)

Successor state:
A,G00 → (AG), (AG) A,G01 → (F),(BL)
A,G10 → (C),(J) A,G11 → -, -

A, G are not equivalent

B,L00 → (AG), (AG) B,L01 → (BL), (BL)
B,L10 → -, - B,L11 → (HK), (HK)
 H,K00 → -, - H,K01 → (BL), (BL)
H,K10 → (E), (E) H,K11 → (HK), (HK)

An illustrative example (BV 9.8)

William Sandqvist william@kth.se

Primitive flowtable P1= (AG)(BL)(C)(D)(E)(F)(HK)(J)
P2= (A)(G)(BL)(C)(D)(E)(F)(HK)(J)
P3=P2

equivalence classes

Next State QPres
state X=00 01 10 11

A A F C - 0

B A B - H 1

C G - C D 0

D - F - D 1

E G - E D 1

F - F - H 0

G G B J - 0

H - B E H 1

J G - J - 0

Reduced flowtable

B for (BL)
H for (HK)

No
unspecified
states has yet
been used!

An illustrative example …

William Sandqvist william@kth.se

Next State QPres
state X=00 01 10 11

A A F C - 0

B A B - H 1

C G - C D 0

D - F - D 1

E G - E D 1

F - F - H 0

G G B J - 0

H - B E H 1

J G - J - 0

Reduced flowtable
B A C D

H F J G E

Next State QPres
state X=00 01 10 11

A A A C B 0

B A B D B 1

C G - C D 0

D G A D D 1

G G B G - 0

New names B (BH), A (AF),
G (JG), D (DE)

Compatibility-graph

Moore
Moore

Moore

Moore Moore

Moore

Different
choices are
possible

• Compatibility

An illustrative example …

William Sandqvist william@kth.se

More reduced flowtable B A D C G

Next State QPres
state X=00 01 10 11

A A A C B 0

B A B D B 1

C G - C D 0

D G A D D 1

G G B G - 0

Slutlig flödestabell
Next State QPres

state X=00 01 10 11

A A A C B 0

B A B D B 1

C C B C D 0

D C A D D 1

New name C for (CG) Now all the unspecified
conditions are used!

Compatibility-graph

Moore

Summary

William Sandqvist william@kth.se

• Asynchronous state machines
– Based on analysis of feedback combinational networks
– All flip-flops and latches are asynchronous state

machines
• A similar theory as for synchronous state

machines can be applied
– Only one input or state variable can be changed at a

time!
– One must also take into account the race problem

William Sandqvist william@kth.se

	Asynchronous sequence circuits
	Golden rule
	Asynchronous state machine
	SR-latch with NOR-gates
	Analysis of sequence circuits
	State function
	State table
	(at exercise, analysis of SR)
	Stable states
	Exitation table
	Terminology
	Flowtable and Statediagram (Moore type)
	Flowtable and Statediagram (Mealy type)
	Asynchronous Moore compatible
	Asynchronous Mealy compatible
	Analysis of asynchronous circuits
	First: D-latch state function
	Exemple: Master-Slave-flip-flop
	Exitationstable
	or with help from K-map …
	Flow table
	Flow table
	Flowtable – impossible transitions
	Flowtable – impossible transitions
	D-flip-flop state diagram
	Slide Number 26
	Synthesis of asynchronous circuits
	Exemple: serial paritety circuit
	Create state diagram
	Create state table
	What is a good state encoding?
	What is a good state encoding?
	State encoding
	Good state encoding
	Poor coding of the parity circuit
	Good coding of the parity circuit
	Slide Number 37
	Problems with non-stable states
	Solution to unstable state
	Extra states – more dimensions
	Extra states – more dimensions
	Karnaugh maps
	The complete circuit
	(easier with D-flip-flop)
	What is Hazard?
	Exemple of Hazard – MUX
	Slide Number 47
	State Minimizing
	State Minimizing
	State Minimizing
	Candy Machine (BV p. 610)
	State diagram, Flow table
	State Minimizing
	Form/minimize equivalence groups
	 Equivalence groups
	Merge equivalence groups
	Compatibility Groups
	Merging rules
	Merger diagram
	Slide Number 60
	An illustrative example (BV 9.8)
	An illustrative example (BV 9.8)
	An illustrative example …
	An illustrative example …
	Summary
	Slide Number 66

