
Asynchronous sequence circuits 
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• An asynchronous sequence machine is 
a sequence circuit without flip-flops 

• Asynchronous sequence machines are 
based on combinational gates with 
feedback 
 

Upon analysis it is assumed : Only one 
signal at a time in the gate circuit can 
change its value at any time 



Golden rule 
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Asynchronous state machine 
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Asynchronous state machines are used when it is 
necessary to maintain a state, but when there is 
no clock available. 
 

• All flip-flops and latches are themselfes 
asynchronous state machines 
• They are useful to synchronize events in 
situations where metastability is/can be  a 
problem 



SR-latch with NOR-gates 
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R  

S  Q  
Y  y  
Delay 

ideal gates 
(delay = 0) 

To analyze the behavior of an asynchronous circuit 
one assumes ideal gates and summarizes all the 
delay to a single block with delay Δ. 



Analysis of sequence circuits 
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R  

S  Q  
Y  y  

By having a delay block we can consider 
y  as the present state 
Y  as next state 



State function 
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R  

S  Q  
Y  y  

)( ySRY ++=

Thus, we can develop a functional relationship of 
the next state Y depending on the input signals S 
and R and the current state y 



State table 
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)( ySRY ++=

Present  Next state  
state  SR =  00 01 10 11 
y  Y  Y  Y  Y  
0  0 0  1  0  
1  1  0  1  0  

)11(10111
)11(01011
)10(10101
)10(01001
)01(10110
)01(11010
)00(10100
)00(00000
)(

++=
++=
++=
++=
++=
++=
++=
++=
++= ySRYRSy

From statefunction to 
truth table 

Or, as in the exercise - using the 
Karnaugh map … 

BV uses 
binary code 



(  at exercise, analysis of SR  ) 
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QRRSQSRQSRQSRQ +=+⋅=+⋅=++=+ )()(

Present 
state Q 

Next state Q+ 
Input signals SR 

00 01 11 10 
0 0 0 0 1 
1 1 0 0 1 

For binary order 



Stable states 
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• Since we do not have flip-flops, but only combinational 
circuits, a state change can result in additional state changes 

• A state is  
– stable if  Y(t) = y(t + Δ) 
– unstable if Y(t) ≠ y(t + Δ) 

Present  Next state  
state  SR =  00 01 10 11 
y  Y  Y  Y  Y  
0  0 0  1  0  
1  1  0  1  0  

yY = stable 



Exitation table 
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The asynchronous coded state table is called  
Excitation table 
The stable states (those with next state = 
present state) will be  ”encircled” 

Present  Next state  
state  SR =  00 01 10 11 
y  Y  Y  Y  Y  
0  0 0  1  0  
1  1  0  1  0  

yY =



Terminology 
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When dealing with asynchronous 
sequential circuits a different 
terminology is used 
 

• The asynchronous uncoded state 
table is called flow table 



Flowtable and Statediagram 
(Moore type) 

William Sandqvist  william@kth.se 

Present  Next state  Output 
state  SR =  00 01 10 11 Q  

A  A  A  B  A  0  

B  B  A  B  A  1  

10 
00 

11 
01 
00 

10 

A  0  ⁄  B  1  ⁄  

11 
01 

SR 



Flowtable and Statediagram 
(Mealy type) 

Present  Next state  Output,  Q  
state  SR =  00 01 10 11 00 01 10 11 

A  A  A  B  A  0  0  0  

B  B  A  B  A  1  1 – 

– 

– 

10/1 
00/1 

11/0 
01/0 
00/0 

10/ – 

A B 

01 – ⁄ 
11 – ⁄ 

SR/Q 

Don’t care (‘-’) has been selected for the output decoder.  It does not matter if 
the output is changed before or after the state transition (= simpler gate array). 

?1 ?1

?0 ?0
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Asynchronous Moore 
compatible 
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• Asynchronous sequential circuits have similar 
structure as synchronous sequential circuits   
• Instead of flip-flops one have a "delay block" 



Asynchronous Mealy 
compatible 
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• Asynchronous sequential circuits have similar 
structure as synchronous sequential circuits  
• Instead of flip-flops one have a "delay block" 
 



Analysis of asynchronous circuits 
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The analysis is done in the following steps : 
1) Replace the feedbacks in the circuit with delay element 
     ∆i. Input signal to delay-element forms the next state Yi, 
while the output signal yi represents the present state. 
2) Find out the next-state and output expressions 
3)  Set up the corresponding excitationstable 
4) Create a flow table by replacing the encoded states by 
symbolic states 
5)  Draw a state diagram if needed 



First: D-latch state function 
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 Q 1D 

C1 

Q D 

   C 

latchfollowC /=

Q D 
   C 

Y y

CyCDY ⋅+⋅=

D-latch statefunction. Functional relationship between the 
current state y and next state Y 

follow latch



Exemple: Master-Slave-flip-flop 
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D  

Clk  

Q  

Q  

D  

C  

Q  
y  s  y  m  

Master Slave  

Q  

D  

Clk  

Q  

Q  

CyCyY
CyCDY

sms

mm

⋅+⋅=

⋅+⋅=

State  
expression: 

Master-slave D flip-flop is constructed from two 
asynchronous D-latches. 



Exitationstable 
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Present  Next state  
state  CD =  00 01 10 11 Output 
y  m  y  s  Y  m  Y  s  Q  

00 0  0  0  0  0  0  10 0  

01 00 00 0  1  11 1  

10 11 11 00 1  0  0  

11 1  1  1  1  01 1  1  1  

From the expressions one can directly derive the 
excitation table (if you can keep it all in your head?) 

CyCyY
CyCDY

sms

mm

⋅+⋅=

⋅+⋅=



or with help from K-map … 
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11110
11111
101
100

10110100

mY

sm yy
DC

1110
111111
1101

00
10110100

sY

sm yy
DC

0010111110
0111111111
0111000001
0010000000
10110100

smYY

sm yy
DC

DCCym Cys

CyCyYCyCDY smsmm ⋅+⋅=⋅+⋅=

Cym

Change rows and colums to get the 
binary order as in BV 



Flow table 
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We define four states S1, S2, S3, S4, which gives us 
the flow table 

Present  Next state  Output 
state  CD =  00 01 10 11 Q  

S1 S     1  S     1  S     1  S3 0  

S2 S1 S1 S     2  S4 1  

S3 S4 S4 S1 S     3  0  

S4 S     4  S     4  S2 S     4  1  



Flow table 
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Remember: Only one input can be changed at a 
time 
• Thus, some transitions will never be able to 
happen! 

Present  Next state  Output 
state  CD =  00 01 10 11 Q  

S1 S     1  S     1  S     1  S3 0  

S2 S1 S1 S     2  S4 1  

S3 S4 S4 S1 S     3  0  

S4 S     4  S     4  S2 S     4  1  



Flowtable – impossible transitions 
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Present  Next state  Output 
state  CD =  00 01 10 11 Q  

S1 S     1  S     1  S     1  S3 0  

S2 S1 S1 S     2  S4 1  

S3 S4 S4 S1 S     3  0  

S4 S     4  S     4  S2 S     4  1  

State S3 
Only stable state for S3 is when input is 11 
Only one input at a time can change → possible changes are 11 → 01,  
11 → 10 

• Theese combinations leaves  S3! 
• Input 00  in  S3 is not possible! 
• Input  00  is therefore  don’t care! 



Flowtable – impossible transitions 
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State S2 
Only stable state for S2 is when input is 10 
Only one input at a time can change → possible changes are 10 → 11, 10 
→ 00 

• Theese combinations leave  S2! 
• Input 01  in  S2 is not possible! 
• Input 01  is therefore don’t care! 

Present  Next state  Output 
state  CD =  00 01 10 11 Q  

S1 S     1  S     1  S     1  S3 0  

S2 S1 S     2  S4 1  

S3 S4 S1 S     3  0  

S4 S     4  S     4  S2 S     4  1  

– 
– 



D-flip-flop state diagram 
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x1 
0x 10 

11 

S2 1  ⁄  S4 1  ⁄  
10 

11 x0 
0x 

11 

S1 0  ⁄  S3 0  ⁄  
10 

0x 0x 

CD 

Don’t care is 
here denoted 
by x 

Don’t care can be used to simplify the circuit (the next 
state decoder). 

00 
01 
10 

00 
01 
11 
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Synthesis of asynchronous circuits 
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The synthesis is carried out in the 
following steps : 

 
1) Create a state diagram acording to the functional 
description 
2) Create a flow table and reduce the number of states if 
possible 
3) Assign codes to the states and create the 
excitationstable 
4) Develop expressions (transfer functions) for next state 
and outputs 
5) Design a circuit that implements the above expressions 



Exemple: serial paritety circuit 
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x y 
Odd 
parity 

t 

Input  x    Output   y  
y = 1 if the number of pulses at 
input  x  is an odd number.  

In other words, an "every other time" circuit … 

1 0 1 
odd odd even 



Create state diagram 
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x y 
odd 
parity 

t A B 

D C 

0 1 

0 1 

0=x
1=x

1=x

0=x

0=x
1=x

1=x

0=x

A/0 
B/1 

C/1 
D/0 

A/0 

1 0 
x 

y 



Create state table 
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x y 
Odd 
parity 

t 

Next StatePres
state

X=0 1

Q

A A B 0

B C B 1

C C D 1

D A D 0

Next StatePres
state

X=0 1

Q

A A B 0

B C B 1

C C D 1

D A D 0



What is a good state encoding? 
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Next StatePres
state

X=0 1

Q

y2y1 Y2Y1

00 00 01 0

01 10 01 1

10 10 11 1

11 00 11 0

Bad encoding (HD=2!) 

• Suppose 
X = 1  Y2Y1 = 11 
 • Then 
X → 0 → Y2Y1 = 00? 

11 → 10! 
11 → 01 → 10!   ? → 00 

We will never reach 00? 

00, 01, 10, 11  - binary code? 



What is a good state encoding? 
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• Suppose 
X = 1  Y2Y1 = 10 
• Then 
X → 0 → Y2Y1 = 00 

10 → 00  

Next StatePres
state

X=0 1

Q

y2y1 Y2Y1

00 00 01 0

01 11 01 1

11 11 10 1

10 00 10 0

Good encoding (HD=1) 

00, 01, 11, 10 – gray code 



State encoding 
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• In asynchronous sequential circuits,  
it is impossible to guarantee that the two state variables 
changes values simultaneously 
– Thus, a transition  00 → 11 could result in  

• A transition 00 → 01 → ??? 
• A transition 00 → 10 → ??? 

• To ensure the function all state transitions MUST have the 
Hamming distans 1 
– The Hamming distans is the number of bits that differs in two 

binary numbers 
• Hamming distans between 00 and 11 is 2 
• Hamming distans between 00 and 01 is 1 

 
 

Richard Hamming 



Good state encoding 
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• Procedure to obtain good codes: 
1) Draw the transition diagram along the edges in 

hypercubes (Gray code) formed by the codes 
2) Remove any crossing lines by 
 a) change the position of two adjacent nodes 
 b) utilize available unused codes 

     (exploit unstable conditions) 
 c) introduce hypercube of more dimensions 



Poor coding of the parity circuit 
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A=00        B=01 

C=10        D=11 

x=1 

x=1 

x=0 x=0 

Poor encoding – 
Hamming Distance = 2 
( crossing lines ) 

Next StatePres
state

X=0 1

Q

y2y1 Y2Y1

00 00 01 0

01 10 01 1

10 10 11 1

11 00 11 0

A 

B 

C 

D 

The poor state encoding 00 01

10 11

cube 



Good coding of the parity circuit 
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Good encoding 
Hamming Distance = 1 
(no crossing lines) 

Next StatePres
state

X=0 1

Q

y2y1 Y2Y1

00 00 01 0

01 11 01 1

11 11 10 1

10 00 10 0

A 

B 

C 

D 

00 01

10 11

cube The good state encoding 

A=00        B=01 

D=10        C=11 

x=1 

x=1 

x=0 x=0 
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Problems with non-stable states 
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C=10 

A=00           B=01 

01 

01 
 

00 10 

Bad encoding 

00 

At the transition between B to C (or C to B) is the Hamming distans 2 (10↔01)! 
Chance to get stuck in an unspecified state (with the code 11)! 

? 11 

Ex. an other circuit: 

Present  Next state  Output 
state  r  2  r  1  =  00 01 10 11 g  2  g  1  

A 00  A  B  C  00 

B 01  A  B  C  B  01 

C 10  A  B  C  C  10 

– 



Solution to unstable state 
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• Solution: The introduction of a transition state 
that ensure that you do not end up in an undefined 
state! 

Good encoding 

C=10 

A=00           B=01 

01 

01 

00 
10 

00 
01 

10 

Present  Next state  
state  r  2  r  1  =  00 01 Output 

y  2  y  1  Y  2  Y  1  g  2  g  1  

A  00 0     0  01 00 

B  01 00 0     1  01 
-  11 01 -- – 
C  10 00 11 10 

11 

0     1  
   

– 

– 
1  0  

10 

10 

11 
   10 

1  0  

Transition state 

01 → 11 → 10 
10 → 11 → 01 

Transition state 



Extra states – more dimensions 
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A       B 

D       C 
C              F 

A              B 

D              E 

G 
A       B 

D       C 
G 

E F 

If there is no way redraw the chart to HD = 1 you may add states by increasing 
the dimension of the hypercube. You then drag the transitions through the then 
available non-stable states. 

• One can increase the number of dimensions 
in order to implement secure state 
transitions 



Extra states – more dimensions 
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• It's easier to draw a "flat" 3D cube 
(perspective, is then from the front) 

000 100 

010 
110 

101 

011 111 

001 

011 111 

000 100 

010 110 

001 101 



Karnaugh maps 
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Next StatePres
state

X=0 1

Q

y2y1 Y2Y1

00 00 01 0

01 11 01 1

11 11 10 1

10 00 10 0

0 1 1 0 

0 0 1 1 

y2y1 
x 00   01   11   10 
0 
1 

0 1 1 0 

1 1 0 0 

y2y1 
x 00   01   11   10 
0 
1 

0 1 

0 1 

y1 
y2 
0 
1 

0     1 

Groupings in red are to avoid Hazard  (see later in course)! 

2121

2

xyyyyx

Y

++

=

1122

1

yxyyyx

Y

++

=

1Q y=



The complete circuit 
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0 1 1 0 

0 0 1 1 

y2y1 
x 00   01   11   10 
0 
1 

0 1 1 0 

1 1 0 0 

y2y1 
x 00   01   11   10 
0 
1 

0 1 

0 1 

y1 
y2 
0 
1 

0     1 

y2 

y1 
Q 

x 

21212 xyyyyxY ++=

11221 yxyyyxY ++=

1Q y=

x y 
Odda 
parity 

t 

Q



( easier with D-flip-flop ) 
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x 

We have made an "every other time" earlier in the course. 
Then with a D flip-flop. But now it was more exiting! 

x y 
Odda 
parity 

t 

Q



What is Hazard? 
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• Hazard is a term that means that there is a danger 
that the output is not stable, but it may “flicker” at 
certain input combinations. 

• Hazard occurs if there is a different distance from 
the various inputs to an output, there will be an 
signal-race. 

• In order to counteract this, one must add the prime 
implikants to cover up the dangerous transition. 



Exemple of Hazard – MUX 
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0 1 1 0 

0 0 1 1 

x 00   01   11   10 
0 
1 Q 

x 

y1 

y2 

Q 

x 

y1 

y2 

At the transition from xy2y1=(111) → (011) the output Q could flicker, 
because the road from x to Q are longer via the upper AND-gate than the 
lower (race). 
 
MORE ABOUT HAZARD IN THE NEXT LECTURE! 

21212 xyyyyxY ++=

extra delay! extra delay! 
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State Minimizing 

William Sandqvist  william@kth.se 

Asynchronous state machines has many 
"unspecified" positions in the flow table 
that can be exploited to minimize the 
number of states. 

The probability that less number of states 
leads to a simpler implementation is high 
in the case of asynchronous circuits! 



State Minimizing 
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Two steps: 
 
Equivalency - equivalent state. The same steps as the 
state minimization of synchronous sequential circuits, 
full flexibility remain. 
 
Compatibility - compatible states will be different for 
Moore or Mealy compliant realization, the choices you 
make now affect the future flexibility. 



State Minimizing 
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• Procedure for minimizing the number of states  
1. Forming equivalence groups.  

To be in the same group, the following shall apply:  
• Outputs must have the same value 
• Stable states must be in the same place (column) 
• Don’t cares for next state muste be at the same place (column) 

2. Minimize equivalence groups (state-reduction) 
3. Form merger diagram different for Mealy or Moore. 
4. Merge compatible states in groups. Minimize the number of groups 

simultaneously. Each state may only be part of one group. 
5. Construct the reduced flow table by merging rows in the selected 

groups 
6. Repeat step 3-5 to see if more minimizations may be done 



Candy Machine ( BV p. 610 ) 
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• Candy Machine has two inputs: 
– N:  Nickel (5 cent) 
– D:  Dime (10 cent) 

• A candy costs 10 cent 
• The machine does not return any money if there are 

15 cent in the machine ( one candy is returned ) 
• Output z is active when there is enough money for a 

candy 



State diagram, Flow table 
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A 
0 

00=ND

B 
0 

N
C 
1 

D

D 
0 

E 
1 

N
F 
1 

D

D

00=ND

N

00=ND

00=ND

00=ND

Pres 
state 

Next State Q 
X=00 01 10 11  

A A B C - 0 

B D B - - 0 

C A - C - 1 

D D E F - 0 

E A E - - 1 

F A - F - 1 
 

 
(X = ND, Q = z) 

A flow table that only has one stable state on each 
row is called a  primitive flowtable. 

• You can’t insert two coins at the same time! 
• No ” double changes” of input signals! 

N
D



State Minimizing 
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A 
0 

00=ND

B 
0 

N
C 
1 

D

D 
0 

E 
1 

N
F 
1 

D

D

00=ND

N

00=ND

00=ND

00=ND

State Minimization means that 
two states may be equivalent, 
and if so, replaced by one state 
to simplify the state diagram, 
and network. 
One can easily see that state C 
and F could be replaced by one 
state, as a candy always be 
ejected after a Dime regardless 
of previous state. 

N
D



Form/minimize equivalence 
groups 
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1. Form equivalence groups. To be in the same group, the 
following applies:  

• Outputs must have the same value 
• Stable states must be at same place (column) 
• Don’t cares for next state must be at same place  

(column) 
2.   Minimize equivalence groups (state reduction). 



• Equivalence groups 
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The states is divided in blocks after the 
output value. 
ABD has output  0, CEF has output 1. 
P1 = (ABD)(CEF) 
Stable states must be for same input 
signal (column), don’t care must be for 
same column. 

 
AD has a stable state for 00. B has a 
stable for 01. CF has a stable state for 
10. E has a stable for 01. AD and CF has 
don’t care for corresponding input 
signals.   

P2 = (AD)(B)(CF)(E) 

Pres 
state 

Next State Q 
X=00 01 10 11  

A A B C - 0 

B D B - - 0 

C A - C - 1 

D D E F - 0 

E A E - - 1 

F A - F - 1 
 

 
(X = ND, Q = z) 



Merge equivalence groups 
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Two rows could be ”merged” if it does not conflikt  their 
successor states 

P2=(AD)(B)(CF)(E) 
P3=(A)(D)(B)(C)(E) 
P4=P3. 

Rows C and F can be merged with a new name C, while A 
and D which has successors in different groups not can 
merge. 

Next State QPres
state X=00 01 10 11

A A B C - 0

B D B - - 0

C A - C - 1

D D E C - 0

E A E - - 1

Resulting flow table C,F00 → (AD), (AD) 
C,F01 →  -, - 
C,F10 → (CF), (CF) 
C,F11 →  -, - 

A,D00 → (AD), (AD) 
A,D01 → (B),(E) 
A,D10 → (CF), (CF) 
A,D11 →  -, - 



Compatibility Groups 
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3. Form merger charts either for Mealy or Moore 
4. Merge compatible states into groups. Minimize the 

number of groups simultaneously. Each state may only be 
part of a group. 

5. Construct the reduced flow table by merging rows in the 
selected groups 

6. Repeat steps 3-5 to see if more minimizations can be 
done 



Merging rules 
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• Two states are "compatible", and can be 
merged if the following applies 
1. at least one of the following conditions apply to all 

input combinations 
• both Si and Sj has the same successor state, or 
• both Si and Sj are stable, or 
• The successor to Si or Sj are both unspecified 

2. Then if you want to construct a Moore-compatible 
statemachine it also apply 
• both Si and Sj has the same output value  ( this is not 

necessary when you construct a Mealy-compatible 
statemachine) 



Merger diagram 
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Next State QPres
state X=00 01 10 11

A A B C - 0

B D B - - 0

C A - C - 1

D D E C - 0

E A E - - 1

Resulting flowtable 

C 

A 

E 

B D 

Compatibily graph 

Mealy-compatible: In state A (X = 00) the 
output is 0, in state C output is 1 

Moore-compatible 

Each line will be a point 
in the Compatibility 
graph.  

C(1): A-C- 
E(1): AE-- 

C(1): A-C- 
A(0): ABC- 

• When there are there are several 
possibilities  … 
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An illustrative example (BV 9.8) 
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Primitive flowtable 

P2= (A)(G)(BL)(C)(D)(E)(F)(HK)(J)    P3=P2 

equivalence classes 
The same output, same position for 
stable states and do not care conditions 
(AG) (BL) (HK)  

P1= (AG)(BL)(C)(D)(E)(F)(HK)(J) 

Successor state: 
A,G00 → (AG), (AG)   A,G01 → (F),(BL)   
A,G10 → (C),(J)  A,G11 →  -, - 

A, G are not equivalent 

B,L00 → (AG), (AG)  B,L01 → (BL), (BL) 
B,L10 →  -, -    B,L11 → (HK), (HK) 
 H,K00 →  -, -    H,K01 → (BL), (BL) 
H,K10 → (E), (E)  H,K11 → (HK), (HK) 



An illustrative example (BV 9.8) 
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Primitive flowtable P1= (AG)(BL)(C)(D)(E)(F)(HK)(J) 
P2= (A)(G)(BL)(C)(D)(E)(F)(HK)(J) 
P3=P2 

equivalence classes 

Next State QPres
state X=00 01 10 11

A A F C - 0

B A B - H 1

C G - C D 0

D - F - D 1

E G - E D 1

F - F - H 0

G G B J - 0

H - B E H 1

J G - J - 0

Reduced flowtable 

B for (BL) 
H for (HK) 

No  
unspecified 
states has yet 
been used! 



An illustrative example … 
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Next State QPres
state X=00 01 10 11

A A F C - 0

B A B - H 1

C G - C D 0

D - F - D 1

E G - E D 1

F - F - H 0

G G B J - 0

H - B E H 1

J G - J - 0

Reduced flowtable 
B      A          C                    D 

H      F          J           G      E 

Next State QPres
state X=00 01 10 11

A A A C B 0

B A B D B 1

C G - C D 0

D G A D D 1

G G B G - 0

New names B (BH), A (AF), 
G (JG), D (DE) 

Compatibility-graph 

Moore 
Moore 

Moore 

Moore Moore 

Moore 

Different 
choices are 
possible 

• Compatibility 



An illustrative example … 
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More reduced flowtable B      A          D         C          G 

Next State QPres
state X=00 01 10 11

A A A C B 0

B A B D B 1

C G - C D 0

D G A D D 1

G G B G - 0

Slutlig flödestabell 
Next State QPres

state X=00 01 10 11

A A A C B 0

B A B D B 1

C C B C D 0

D C A D D 1

New name C for (CG) Now all the unspecified 
conditions are used! 

Compatibility-graph 

Moore 



Summary 
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• Asynchronous state machines 
– Based on analysis of feedback combinational networks 
– All flip-flops and latches are asynchronous state 

machines 
• A similar theory as for synchronous state 

machines can be applied 
– Only one input or state variable can be changed at a 

time! 
– One must also take into account the race problem 



William Sandqvist  william@kth.se 
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