Asynchronous seguence circuits

e An asynchronous seqguence machine Is
a seqguence circuit without flip-flops

e Asynchronous sequence machines are
based on combinational gates with
feedback

Upon analysis it is assumed : Only one
signal at a time in the gate circuit can
change its value at any time
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Golden rule
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Asynchronous state machine

Asynchronous state machines are used when it is
necessary to maintain a state, but when there is
no clock available.

o All flip-flops and latches are themselfes
asynchronous state machines

e They are useful to synchronize events In
situations where metastability is/can be a
problem
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SR-latch with NOR-gates

To analyze the behavior of an asynchronous circuit
one assumes ideal gates and summarizes all the
delay to a single block with delay A.

Ideal gates

delay =
R (e/ay%:elay
Y y
sj 5 TQ
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Analysis of sequence circults

By having a delay block we can consider
y as the present state
Y as next state
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State function

Thus, we can develop a functional relationship of
the next state Y depending on the input signals S
and R and the current state y

R

S‘_Dwﬂ TQ

Y=R+(S+Yy)
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BV uses

State tab I e binary code

From statefunction to Y =R+ (S+Y)

truth table

0 0 0| 0=0+(0+0) state | SR=00 01 10 11
0 0 1|o-1xro— | Y Y Y Y Y
0 1 0| 1=1+(1+0) O\\O 0 1 o
0 1 1| 0=1+(+0) ) .

1 0 0| 1=6+(0+D - 1 0 1 0
PO 0=1r04 Or, as in the exercise - using the
1 1 0| 1=0+(1+1) Karnaugh map

1 1 1| 0=1+(1+))
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( at exercise, analysis of SR )
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Present Next state Q*
state Q Input signals SR
00 01 11 10
0 0 0 1
1 1 0 0
—
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Stable states

Present Nexstate
state| SR=00 01 10 11
y Y Y Y Y
0 0 0 1 O
1 1 0 1 O

 Since we do not have flip-flops, but only combinational
circuits, a state change can result in additional state changes

e Adstate s

— stableif Y(t)=y(t+A) Y = y stable
— unstable if Y(t) # y(t + A)
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Exitation table
The asynchronous coded state table is called

Excitation table

he stable states (those with next state =
present state) will be “encircled”

Present Nexstate
state | SR=00 01 10 11

y Y Y Y Y
© © <:>
(1) @oé?
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Terminology

When dealing with asynchronous
sequential circuits a different
terminology Is used

e The asynchronous uncoded state
table is called flow table
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Flowtable and Statediagram
(Moore type)

Present Next state Output
statt | gr =00 01 10 11| Q

A @@ 8 @) o
B 8) A (B) A| 1

SR

10
SO O Pk
01 10
11

01

11
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Flowtable and Statediagram
(Mealy type)

Present Next state Output,Q
state | gr=00 01 10 11|00 01 10 11

A A @ B (A)Jo 0o - o0
B B A (B A1 - 1 -

SR/Q
> 10/ — T
00/0 ' /7 00/1
01/0 A B 1001
11/0 /S
0? 0?
01—
11,/—

Don’t care (“-”) has been selected for the output decoder. It does not matter if
the output is changed before or after the state transition (= simpler gate array).
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Asynchronous Moore
compatible

State

Asynchronous

States dela
Next State block A Y DUtFUt

Input decoder decoder

signals Output

signals

e Asynchronous sequential circuits have similar
structure as synchronous sequential circuits
e [nstead of flip-flops one have a "delay block™
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Asynchronous Mealy
compatible

Tillstand (State)

Next State Asynchronous Output

decoder states decoder
Input delay bleck A Outout
signals sigrﬁals

e Asynchronous sequential circuits have similar
structure as synchronous sequential circuits
e [nstead of flip-flops one have a "delay block™
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Analysis of asynchronous circuits

The analysis i1s done in the following steps :
1) Replace the feedbacks in the circuit with delay element
A;. Input signal to delay-element forms the next state Y;,
while the output signal y; represents the present state.
2) Find out the next-state and output expressions
3) Set up the corresponding excitationstable

4) Create a flow table by replacing the encoded states by
symbolic states

5) Draw a state diagram if needed
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First: D-latch state function

D—110 Q}—0Q Yy
cC—Cl1 p— D- RIS

C = follow/latch

D-latch statefunction. Functional relationship between the
current state y and next state Y

Y=D-C+y-C

follow latch
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Exemple: Master-Slave-flip-flop

Master-slave D flip-flop Is constructed from two

asynchronous D-latches.

Master Slave State
Ym Ys -
C—+Clk O Clk Q C

o

——0 Y =D-Csy -C
Y, =y-C+y,-C
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Exitationstable

From the expressions one can directly derive the
excitation table (if you can keep it all in your head?)

Present Next state
— state [ CD =00 01 10 11 | Output
Ym:D°C+ym°C ymy Yo Y Q
Y=y -C+y,-C ‘ 00 10| o
01 o0 o0 () 11| 1
10 11 1 00 Q| o
11 W @ o @W| 1
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or with help from K-map ...

Ym YS
CD CD
Vv, 00 01 1=1 10 Y. Y. 00 01 11 10
00 1 00
01 1 01 1 1
11 1 11 ll 1| 111
10 {1 1) |1 10 |1 1
y,C DC ynC y,C
Y =D-C+y_-C Y,=y -C+y,-C

Change rows and colums to get the
binary order as in BV
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CD
Yim ys\ 00
00

01
‘ 11

10

01

10

00
00
11
11

00
00
11
11

00
01
01
00

a

Present
state
Ym Vs

Next state

CD =00 01 10 11

Quiput

00
01
10
1l

®0®
00 00 (01) 11
111 00 (10)
W @ o @

D ke




We define four states S1, S2, S3, S4, which gives us

Flow table

the flow table

Pres Next state Present Nextstate OUtpUt
state | €D =00 01 10 11| Owput stat¢e | cp=00 01 10 11 Q
Ym ¥s ¥ Vo 2

S1 S3 0
00 10 0 - @ @ @
01 00 00 m| o1 S2 S1 S1 CSZ) S4 1
10 i1 00 0 33 sS4 s4 s1 @ 0
1 @) @) o1 Q| 1

s4 & & sz & 1
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Flow table

Remember: Only one input can be changed at a
time

e Thus, some transitions will never be able to
happen!
Present Nextstate Output
state | cp=00 01 10 11| @
s1 ) (s) (s) s3| o
S2 s1 s1 (2 s4| 1
S3 s4 s4 s1 (| o
sS4 ® @ s2 & 1
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Flowtable — impossible transitions

g—38

Present Nextstate Output
statt {cp=00 01 10 11| @

s1 s) (s) (s) s3

S2 s1 s1 (2 s4
=) | S3 s4 sS4 S1 ()
sS4 ® & s2 &

State S3

Only stable state for S3 is when input is 11

Only one input at a time can change — possible changes are 11 — 01,
11— 10

e Theese combinations leaves S3!

e Input 00 in S3is not possible!

e Input 00 is therefore don’t care!

R O B+ O

William Sandgvist william@kth.se



Flowtable — impossible transitions

a4a
Present Nextstate Output
statt | cp=00 01 10 11| @

s1 S) (s) (s) s3
) | s s1 - (@ s4

S3 - s4 s1 (Y

sS4 () & s2 (&
State S2

Only stable state for S2 is when input is 10

Only one input at a time can change — possible changes are 10 — 11, 10
— 00

e Theese combinations leave S2!

e Input 01 in S2 is not possible!

e Input 01 is therefore don’t care!

O +» O
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D-flip-flop state diagram

co
11

Dont careis
here denoted 01 .@ 83/0 11
10 10

by X

10

f

&

S2/1

&
11

00
01
10 11

eeeee

Nextstate

CDO=00 01 10 M1

&) s3
s1<-—J@ s4
- __siyst(sy
& & 2 &

Don’t care can be used to simplify the circuit (the next

state decoder).
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Synthesis of asynchronous circuits

The synthesis is carried out in the
following steps :

1) Create a state diagram acording to the functional
description

2) Create a flow table and reduce the number of states if
possible

3) Assign codes to the states and create the
excitationstable

4) Develop expressions (transfer functions) for next state
and outputs

5) Design a circuit that implements the above expressions
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Exemple: serial paritety circuit

Input X Output vy

X —

y = 1 if the number of pulses at

Input X 1S an odd number.

Odd

parity — Y

t—>

In other words, an "‘every other time"' circuit ...

1

0

odd even
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Create state diagram

x—jodd Ly
parity
_ x=1
x=0 A x=1 3 t—>
}
0 L.
Xx=0 Xx=0 y
B/1 D/0
x=1 X
[h‘ C - —_— —
0 1 1 0

William Sandgvist william@kth.se



Create state table

«__| Odd

parity
{t—

Pres Next State Q
state

Tt
o

1
B
D

©
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What Is a good state encoding?
00, 01, 10, 11 - binary code?

Sl?t;etz Next State Q o Suppose
e — X=1Y,Y,=11
e Then

o X — 0= Y,Y, = 007

00 00) o1 0

o1 | 'pt )| 1 11 — 10!

10 Iﬁg’ 11 | 1 11 - 01 —» 10! ? —(00
11 001 | o

Bad encoding (HD=2!) We will never reach 007
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What Is a good state encoding?
00, 01, 11, 10 — gray code

° Suppose Pres | Next State Q
X=1Y,Y,=10 e
e Then X=0—1
X—>0-Y,Y, =00 yyi | Yot
00 00 o1 0
10 —(00 o ||lu @) 1
11 W 10| 1
10 00<—10)| 0

Good encoding (HD=1)
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State encoding

 |n asynchronous sequential circuits, Richard Hamming
It Is Impossible to guarantee that the two state variables
changes values simultaneously

— Thus, a transition 00 — 11 could result in
e Atransition 00 » 01 — ???
e Atransition 00 » 10 — ???

 To ensure the function all state transitions MUST have the

Hamming distans 1

— The Hamming distans is the number of bits that differs in two

binary numbers
e Hamming distans between 00 and 11 is 2
e Hamming distans between 00 and 01 is 1
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Good state encoding

* Procedure to obtain good codes:

1) Draw the transition diagram along the edges in
hypercubes (Gray code) formed by the codes

2) Remove any crossing lines by
a) change the position of two adjacent nodes

b) utilize available unused codes
(exploit unstable conditions)

c) introduce hypercube of more dimensions
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Poor coding of the parity CIFCUIt

The poor state encoding
cube
10 11
Pres Next State Q
state A=00 B=01
X=0 1
Yay1 YY1
A 00 00 o1 0
B 01 1 1
é' @ C=10 D=11
Cc10 I 11 1
D11 00 @ 0 Poor encoding —

Hamming Distance = 2
( crossing lines )
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Good coding of the parity circuit

The good state encoding cube
10 11
Pres Next State Q
state A=00 ._.B=01
X=0«—1
Yay1 YY1
A 00 00 o1 0
o1 | |11 1) 1
c 11 @ 10 1 D=10 c=11
D 10 00—10)] O Good encoding

Hamming Distance = 1
(no crossing lines)
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Problems with non-stable states

Ex. an other circuit:

Present Nextstate Output
staté | y,r; =00 01 10 11| %%
A 00 (A B Cc —| 00
B 01 A (B C 01
C 10 A B (© (©| 10

C=10
@11

A=00 B=01

Bad encoding

At the transition between B to C (or C to B) is the Hamming distans 2 (10<-01)!
Chance to get stuck in an unspecified state (with the code 11)!
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Solution to unstable state

« Solution: The introduction of a transition state
that ensure that you do not end up in an undefined

State!

Transition state

A=00 B=01

Good encoding

Presentl Nextstate
state | ror1= 00 01 11 10| Output
y2y1 Y2Y1 9,9
00 @ o1 — 10| 00
01 00 @ 11| o1
11 i
10 00 11 @ (10| 10
01 > 11 —-> 10
10 » 11> 01

Transition state

William Sandgvist william@kth.se




Extra states — more dimensions

 One can Increase the number of dimensions
In order to implement secure state
transmons

KK -

If there is no way redraw the chart to HD = 1 you may add states by increasing
the dimension of the hypercube. You then drag the transitions through the then
available non-stable states.
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Extra states — more dimensions

e |t's easier to draw a "flat" 3D cube
(perspective, Is then from the front)

5011 111/)
o—E
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Karnaugh maps

YaY1
X 00 01 11 10

0.0

/0

Pres Next State Q
State
X=0 1 /
yay1 Y% T
00 01| o
01 11 1
11 | @ 10| 1
10 | 00 0

Y, =

Xy, v
y2\ 0O 1

0

0
1

YaY1
X 00 01 11 10
0 1)0
1 A1)}0 |0

Y, =
XY, XY, ALY,y Xy,
Y1

0
0

Q:yl

Groupings in red are to avoid Hazard (see later in course)!
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YaY1

x\ 00 01 11 10

0|0

The complete circuit

1
0

0

Y, = Xy, + Y, Y, + XY,

YaY1

x\ 00 01 11 10

1

0
1

O‘OE;:LI
1
0

0

0

AN

0
1

Y1

0 1

Y1 — Xyz "'92 Y1 +;y1

Bo

Q:yl

Odda
X parity Q

t—

¢ }

* Dé\yz

= —

— Y1 Q
J — |
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( easier with

D-flip-flop )

. N Odc_ia 0
D=0 0=D parity
O {—
D4 Tip o<
X >C1 be—

We have made an '‘every other time"* earlier in the course.
Then with a D flip-flop. But now it was more exiting!
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What 1s Hazard?

* Hazard Is a term that means that there iIs a danger
that the output is not stable, but it may “flicker” at
certain input combinations.

 Hazard occurs If there Is a different distance from
the various inputs to an output, there will be an
signal-race.

 In order to counteract this, one must add the prime
Implikants to cover up the dangerous transition.
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Exemple of Hazard - MUX

extra delay! extra delay!

x\ 00 01 11 10
OO0 0 Y1

1
0|10g1 )1

Yo

Yz — ;3/1 "‘ XY, X

At the transition from xy,y,=(111) — (011) the output Q could flicker,

because the road from x to Q are longer via the upper AND-gate than the
lower (race).

MORE ABOUT HAZARD IN THE NEXT LECTURE!
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State Minimizing

Asynchronous state machines has many
"unspecified' positions in the flow table

that can be exploited to minimize the
number of states.

The probability that less number of states
leads to a simpler implementation is high
In the case of asynchronous circuits!
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State Minimizing

Two steps:

Equivalency - equivalent state. The same steps as the
state minimization of synchronous sequential circuits,
full flexibility remain.

Compatibility - compatible states will be different for
Moore or Mealy compliant realization, the choices you
make now affect the future flexibility.
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State Minimizing

e Procedure for minimizing the number of states

1. Forming equivalence groups.
To be in the same group, the following shall apply:
» Outputs must have the same value
 Stable states must be in the same place (column)
» Don’t cares for next state muste be at the same place (column)

2. Minimize equivalence groups (state-reduction)
3. Form merger diagram different for Mealy or Moore.

4. Merge compatible states in groups. Minimize the number of groups
simultaneously. Each state may only be part of one group.

5. Construct the reduced flow table by merging rows in the selected
groups
6. Repeat step 3-5 to see if more minimizations may be done
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Candy Machine ( BV p. 610 )

£

5 K4
L V

Candy Machine has two inputs:
— N: Nickel (5 cent)
— D: Dime (10 cent)

A candy costs 10 cent

The machine does not return any money if there are
15 cent in the machine ( one candy Is returned )

Output z Is active when there Is enough money for a
candy
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State diagram, Flow table

e No ” double changes” of input signals!
e You can’t insert two cqgins at the same time!

Pres Next State |, Q
state [X=00 01 10 11
A @ B ¢ 0
B D (B)2 0
| C A =) 1
D (D E F 0
E NGO 1
F A =2(F) 1

(X=ND, Q=2)
A flow table that only has one stable state on each
row is called a primitive flowtable.
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State Minimizing

State Minimization means that
two states may be equivalent,
and If so, replaced by one state
to simplify the state diagram,
and network.
One can easily see that state C
.. and F could be replaced by one
“state, as a candy always be
ejected after a Dime regardless
of previous state.
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Form/minimize equivalence
groups

1. Form equivalence groups. To be in the same group, the
following applies:

 Outputs must have the same value
o Stable states must be at same place (column)

e Don’t cares for next state must be at same place
(column)

2. Minimize equivalence groups (state reduction).
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e Equivalence groups

The states is divided in blocks after the
output value.

Pres Next State Q ABD has output 0, CEF has output 1.
state | X=00 01 10 11 P, = (ABD)(CEF)

A (A)B C - 0 Stable states must be for same input

5 5 0 signal (column), don’t care must be for

~ same column.

C A - -] 1

b @ EFo- 0 AD has a stable state for 00. B has a

E A @ - 1 stable for 01. CF has a stable state for

= A - @ ] 1 10. E has a stable for 01. AD and CF has

don’t care for corresponding input
signals.

P, = (AD)(B)(CF)(E)
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successor states

Merge equivalence groups
Two rows could be ’merged” if it does not conflikt their

Fres Nex State Q
state [X=00 01 10 11
A ATEB 0
B p(E)- -] 0
C A - -] 1
D MmEF -| 0
E AE) - |
F A -(F) -] 1
({=ND,Q =7

P,=(AD)(B)(CF)(E)
Ps=(A)(D)(B)
P,=P.

)JE)

Rows C and F can be merged with a new name C, while A
and D which has successors in different groups not can
merge.

C.Fyy— (AD), (AD) Resulting flow table
C1F01 > - - Pres Next State Q
CFyp— (CF), (CF) || 77° |X°00 o110 1
CFy— - - A A) B C 0
\\ B D - 0
ADy, — (AD), (AD) | (©) A - 1
A,Dy, — (B),(E) D @ e c 0
A,D,, — (CF), (CF) - A ) - )

A’Dll —> Ty T
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Compatibility Groups

Form merger charts either for Mealy or Moore

Merge compatible states into groups. Minimize the
number of groups simultaneously. Each state may only be
part of a group.

Construct the reduced flow table by merging rows in the
selected groups

Repeat steps 3-5 to see if more minimizations can be
done
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Merging rules

e Two states are ""compatible', and can be
merged If the following applies

1. at least one of the following conditions apply to all
Input combinations
* both S; and S; has the same successor state, or
* both S; and S; are stable, or
* The successor to S; or S;are both unspecified

2. Then if you want to construct a Moore-compatible
statemachine it also apply

* both S; and S; has the same output value ( this is not
necessary when you construct a Mealy-compatible

statemachine)
William Sandgvist william@kth.se



Resulting flowtable

Merger diagram

e \When there are there are several

5 possibilities ...

Pres Next State
state | X=00 01 10 11 Compatibily graph
A A) B C 0
B D - 0 Moore-compatible
C A - 1 C(1):|A-C-
D @ E c 0 i E(1):|AE--
E AE - 1 i e o

A B D

Each line will be a point
in the Compatibility
graph.

Mealy-compatible: In state A (X = 00) the
output is 0, in state C output is 1
C(1):| A-C-
A(0):| ABC-

William Sandgvist william@kth.se



William Sandgvist william@kth.se



An illustrative example (BV 9.8)

equivalence classes

Primitive flowtable  The same output, same position for

Pes [ _Texsee | a stable states and do not care conditions
(AG) (BL) (HK)

> A @ C - 0
S I P,= (AG)BL)CHD)E)P(HK)()
D @] Successor state: A, G are not equivalent
; @C@ >| 1| [AGy— (AG), (AG) AGy — (F)(BL)
= G @84 -| 0 AGy— (€).(J) AGy > - -
- LE @ B,L,, = (AG), (AG) B,Ly; — (BL), (BL)
e -0 o 0 BLo— -, - B,y — (HK), (HK)
- B E 1
> L A - K| 1 HKgp— - - HKgy — (BL), (BL)
H,K,, = (E), (E) HK{ — (HK), (HK)

P,= (A)(G)(BL)(C)D)(E)(FYHK)J)  Ps=P,
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An illustrative example (BV 9.8)

equivalence classes

Primitive flowtable P,= (AG)(BL)(C)(D)(E)(F)(HK)(J)
P,= (A)(G)(BL)(C)(D)(E)(F)(HK)(J)

Pres Mext State ] P.=P
state [X=00 01 10 11 32
A @Fc - o Reduced flowtable
B A i H 1 Pres Next State Q
C G D 0 state | X=00 01 10 11
° @@ > | Bfor(BL) il N
E -(® o 1 H for (HK) B AG L M|
- @ " ) C c (9 b| o

D - F - @O 1
G @84 -] o0 NoO » E c -€® o| 1
H - LE @] . F ® - H| o
! s - - | o unspecified s | @83 -| o
K s e @ 1 states has yet H “s e @ 1
L A(D - K| 1 been used! ’ c - -] o
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An illustrative example

e Compatibility Cofmpatibcility-g%aph Different
Reduced flowtable choices are
Pres Next State Q Moore € Midofe POSSIDle
state | X=00 01 10 11
o | @ n| Ay
>C G - @ D| o Pres Next State Q

D ®| 1 state [X=00 01 10 11
EE G -@ D| 1 A A AC B| 0
> -® - H] o B ABD B| 1
[ @83 -] 0 C G -C D| 0
. B E@ 1 » D G AD D| 1
> c -9 |0 G G B G 0

New names B (BH), A (AF),
G (.JG), D (DE) William Sandqvist william@kth.se



An Iillustrative example ...

More reduced flowtable

Compatibility-graph

B A D G
o O o

Slutlig flodestabell

Pres Next State Q

state | X=00 01 10 11

A ®®c B| 0

B A D 1
— C G -© D| 0

D G AD O 1
- G G B G - 0

New name C for (CG)

Pres Next State Q
state | X=00 01 10 11

A AAC B| O
B A D 1
C ©BO D| O
D c AD O| 1

Now all the unspecified
conditions are used!
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Summary

« Asynchronous state machines
— Based on analysis of feedback combinational networks

— All flip-flops and latches are asynchronous state
machines

e Asimilar theory as for synchronous state
machines can be applied

— Only one input or state variable can be changed at a
time!

— One must also take into account the race problem
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