
Last lecture (7) 
• Particle motion in magnetosphere 

• Aurora 

Today’s lecture (8) 
• Aurora on other planets 

• How to measure currents in space 

• Magnetospheric dynamics 
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Activity Date Time Room Subject Litterature 

L1 31/8 13-15 V22 Course description, Introduction, The 
Sun 1, Plasma physics 1 

CGF Ch 1, 5, (p 110-
113) 

L2 3/9 15-17 Q36 The Sun 2, Plasma physics 2  CGF Ch 5 (p 114-
121), 6.3 

L3 7/9 13-15 Q36 Solar wind, The ionosphere and 
atmosphere 1, Plasma physics 3 

CGF  Ch 6.1, 2.1-
2.6, 3.1-3.2, 3.5,   LL 
Ch III, Extra material 

T1 10/9 15-17 Q36 Mini-group work 1   
L4 14/9 13-15 E2 The ionosphere 2, Plasma physics 4 CGF Ch 3.4, 3.7, 3.8  
T2 17/9 8-10 Q31 Mini-group work 2   
L5 17/9 15-17 L52 The Earth’s magnetosphere 1, Plasma 

physics 5 
CGF 4.1-4.3, LL Ch 
I, II, IV.A 

L6 21/9 13-15 L52 The Earth’s magnetosphere 2, Other 
magnetospheres 

CGF Ch 4.6-4.9, LL 
Ch V. 

T3 24/9 16-18 Q36 Mini-group work 3   
L7 28/9 13-15 Q36 Aurora, Measurement methods in space 

plasmas and data analysis 1 
CGF Ch 4.5, 10, LL 
Ch VI, Extra 
material 

T4 1/10 15-17 V22 Mini-group work 4   
L8 5/10 13-15 M33 Space weather and geomagnetic storms CGF Ch 4.4, LL Ch 

IV.B-C, VII.A-C 
L9 6/10 8-10 Q36 Interstellar and intergalactic plasma, 

Cosmic radiation,  
CGF Ch 7-9 

T5 8/10 15-17 Q34 Mini-group work 5   

L10 12/10 13-15 Q36 Swedish and international space physics 
research. 

  

T6 15/10 15-17 Q33 Round-up.    

Written 
examination 

28/10 8-13 Q21, 
Q26 

    



Mini-groupwork 4 

a) 
 

2
2 0

03

1 / 2
4SW SW

av
r

µρ µ
π

 = ⇒  

( )
1/ 3

1/ 620
02

4 SW SW
ar vµ µ ρ

π
− =  

 

Assuming the solar wind consists of protons 
 

22 3
, 1.7 10SW e SW pn m kg mρ − −= = ⋅

Thus 
 
r = 2.7·109 m ≈ 38 RJ 
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Mini-groupwork 4 
b) 

Substitute x = 1/r3. This gives you an equation on 
the form 

 

ax2 + bx + c = 0 

 

with 

2
460

0/ 2 1.02 10
4
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 = = ⋅  

2 112.7 10SW SWc vρ −= − = − ⋅

From this you get   r ≈ 73 RJ 
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Planetary magnetospheres 

< 0.03 

0.065 

Very weak magnetic 
fields 
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Relative size of the magnetospheres 
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Voyager 1 and 2 

Comparative magnetospheres 
In situ observations 

Mariner 10 Mercury 1974 – 1975 

Messenger * Mercury 2008  ̶̶  2015 

Pioneer 10,11 Jupiter, Saturn 1973 – 1979 

Voyager 1,2 Jupiter, Saturn, 
Uranus, Neptune 1977 – 1989 

Ulysses Jupiter 1992 

Galileo* Jupiter 1995 – 2003 

Cassini* Jupiter, Saturn 2004 –  

New Horizons Jupiter 2007 

Rosetta Churymov-Gerasimenko 2014 - 2016 

* Orbiters 

Space probe Celestial body Observations 

Mariner 10 

Pioneer 10 

Ulysses 

Galileo 

Cassini Pioneer 11 

New Horizons 
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Messenger 

Rosetta 

http://upload.wikimedia.org/wikipedia/commons/6/60/Mariner10.gif


Comparative magnetospheres 
Solar wind properties  

Solar wind velocity 

Pioneer 10, measurements 
[Grazin et al., 1994] 

n e
 (c

m
-3

) 

Solar wind electron density 

[Blanc et al., 2005] 

~1/r2 

24dV r drπ=

r (AU) 
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Comparative magnetospheres 
Observed vs. theoretical standoff-distance  

( )
1/ 3

1/ 620
02

4theor SW SW
ar vµ µ ρ

π
− =  

 

E 

M 

E 

J 

N 
S 

U 

rtheor (RE ) 

r o
bs

 (R
E 

) 

• Model reasonably valid over three orders of 
magnitude 

• Size of Jupiter’s (and maybe Saturn’s) 
magnetosphere underestimated  
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Other other magnetospheres 
Heliosphere 

Interstellar  
wind 

[Opher, 2007] 
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Heliosphere 

• Reaches approximately 100 AU into space (=1.5x1013 m) 

• Voyager sonds are approaching/encountering the 
heliopause right now 
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Collisions - emissions 
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Emissions 
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Oxygen emissions 
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Why is there no red emissions 
at lower altitude? 
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Oxygen emissions 

The red emission line is suppressed 
by collisions at lower altitudes due 
the its long transition time. (When 
an excited atom collides with 
another atom, is is de-excited 
without any emission.) 
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Larger scales 

Foto från DMSP-satelliten 

Single arcs ~10 – 100 km 

Whole auroral zone ~ 500 
km 
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Auroral ovals 

Dynamics Explorer 
Polar 
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The auroral oval is the projection of the 
plasmasheet onto the atmosphere 

Mystery! 

The particles in 
the plasmasheet 
do not have high 
enough energy to 
create aurora 
visible to the eye. 
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Magnetic mirror 

The magnetic moment µ is an 
adiabatic invariant.  

B
mv

B
mv

2
sin

2

222 αµ == ⊥

mv2/2 constant (energy conservation) 
2sin konst

B
α

=

2/ sinturnB B α=

particle turns when α = 90°  

flα α<Particles in    
loss cone : 

max/arcsin BBfl => αα

If maximal B-field is Bmax a particle 
with pitch angle α can only be turned 
around if  

2
max/ sinturnB B Bα= ≤
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Why particle acceleration? 
• The magnetosphere often 

seems to act as a current 
generator.  

• The lower down you are 
on the field line, the more 
particles have been 
reflected by the magnetic 
mirror.  

• At low altitudes there are 
not enough electrons to 
carry the current. 
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Why  particle acceleration? 

• Electrons are accelerated 
downwards by upward E-
field. 

• This increases the pitch-angle 
of the electrons, and more 
electrons can reach the 
ionosphere, where the current 
can be closed.  

j 
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Distribution function 

Example: 
Maxwellian 
distribution 
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vx 

vz 



Why  particle acceleration? 

• Electrons are accelerated downwards by upward E-field. 

• This increases the pitch-angle of the electrons, and more electrons 
can reach the ionosphere, where the current can be closed.  
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Satellite signatures of U potential 

B 

E 

Measurements made by the ISEE satellite 
(Mozer et al., 1977) 
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Acceleration regions 

, including auroral acceleration 

Auroral acceleration region typically situated at altitude of 1-3 RE 
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Auroral spirals 

Develop when arcs become unstable 
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Spirals – Kelvin-Helmholz 
instability 

Auroral arc 

B 

E 

E 
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Satellite signatures of U potential 

B 

E 

Measurements made by the ISEE satellite 
(Mozer et al., 1977) 
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Spirals – Kelvin-Helmholz 
instability 

Auroral arc 

B 

E 

E 

v = E x B 

v = E x B 

Opposite flows trigger the 
K-H instability 
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Mercury 

• No atmosphere 

• X-ray aurora??? 
Can possibly be created by 
electrons colliding directly 
with the planetary surface 
and lose their energy in one 
single collision. 
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Jupiter aurora 

Foto från Hubble Space Telescope 

• Jupiter’s aurora has a power of 
~1000 TW (compare Earth: ~100 
GW, nuclear power plant: ~1 GW) 

• Note the “extra” oval on Io’s flux 
tube! 
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Jupiter and Io 

The Jupiter moon Io is very volcanically active, and deposes large amounts of 
dust and gas in Jupiter’s magnetosphere. This is ionized by the sunlight, and the 
charged plasma partícles follow Jupiter’s magnetic field lines towards the 
atmosphere and cause auroral emissions.  
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Aurora of the other planets 

Saturnus’ aurora: not noticeably different 
from Jupiter’s, but much weaker. (Total 
power about the same as Earth’s aurora.) 

Saturn 
Uranus: Auora detected in UV. 
Probably associated with Uranus’ ring 
current/radiotion belts and not very 
dynamic. 

Neptunus: weak UV aurora detected. 

Mars, Venus: No aurora. 
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Prerequisites for… 

Life 
• Energy source (sun) 
• Atmosphere 
• Magnetic field 
• Water 

Aurora 
• Energy source (sun) 
• Atmosphere 
• Magnetic field 
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At what planets do you expect  
aurora to exist? 

Green 

Yellow 

Red 

Blue Earth, Mercury, 
Jupiter, Saturn 

Earth, Mars, Jupiter, 
Saturn, Uranus, 

Neptune 

Earth, Venus, Jupiter, 
Saturn, Uranus, 

Neptune 

Earth, Jupiter, Saturn, 
Uranus, Neptune 
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What do we need to have an aurora? 

• Magnetic field (to guide the plasma 
particles towards the planet) 

• Atmosphere (to create emissions) 
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At what planets do you  
expect aurora to exist? 

Red Earth, Jupiter, Saturn, 
Uranus, Neptune 
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On space weather and 
viewing aurora 

EF2240 Space Physics 2015 

Some space weather sites 
 

http://spaceweather.com/ 
 
http://www.esa-spaceweather.net/ 
 
http://sunearthday.nasa.gov/swac/ 
 
http://www.noaawatch.gov/themes/spac
e.php 
 
http://www.windows2universe.org/spac
eweather/more_details.html 
 

Kiruna 
 

Kiruna all-sky camera: 
http://www.irf.se/allsky/rtasc.php 
 

http://sunearthday.nasa.gov/swac/
tutorials/aur_kiruna.php 
 
Forecasts: 
http://flare.lund.irf.se/rwc/aurora/ 
 

http://www.irf.se/Observatory/?li
nk[All-
skycamera]=Aurora_sp_statistics 



Birkeland currents in the auroral oval 
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How can you measure 
currents in space? 
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Current sheet approximation 

Approximate currents by thin 
current sheets with infinite  size in 
the x- och z-directions. 

j 

z 
y 

x 
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Current sheet approximation 

j 

B 

j 

B 

What will the magnetic field around such a current configuration be? Start 
by approximating with line currents to get a qualitative picture. 

The closer you place the line currents, the more the magnetic 
fields between the line currents will cancel 
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Current sheet approximation and 
Ampére’s law 

Ampére’s law (no time dependence): 
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Current sheet - example 
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What is the direction of the current in current sheet 1? 

Into the ionosphere 

Out of the ionosphere Red 

Blue 
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Birkeland currents in the auroral oval 
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Frozen in magnetic field lines 

This applies if the  magnetic Reynolds 
number is large: 

0 1m c cR l vµ σ= >>

An example of the 
collective behaviour 
of plasmas. 

In fluid description of 
plasma two plasma 
elements that are 
connected by a 
common magnetic 
field line at time t1 will 
be so at any other 
time t2 . 
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Magnetic reconnection 
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X Magnetic reconnection 
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Reconnection 

• Field lines are “cut” and can be re-
connected to other field lines 

• Magnetic energy is transformed 
into kinetic energy (Uo >> Ui) 

• Plasma from different field 
lines can mix 

In ‘diffusion region’: 

Rm = µ0σlv ~1 
 

Thus: condition for 
frozen-in magnetic field 
breaks down. 

A second condition is 
that there are two 
regions of magnetic 
field pointing in 
opposite direction: 
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Reconnection and plasma convection 

Solar wind 
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Reconnection och plasma convection 

• Reconnection on the dayside 
“re-connects” the solar wind 
magnetic field and the 
geomagnetic field 

• In this way the plasma 
convection in the outer 
magnetosphere is driven 

• In the night side a second 
reconnection region drives 
the convection in the inner 
magnetosphere.  
The reconnection also heats 
the plasmasheet plasma.  
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What happens if IMF is northward instead? 
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Magnetospheric dynamics 

open magnetosphere closed magnetosphere 

Interplanetary 
magnetic field (IMF) 

northward southward 
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Magnetospheric dynamics 
open magnetosphere 

Southward  
IMF 
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Magnetospheric topology 

Open field lines 

Closed field lines 
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Reconnection 

• Field lines are “cut” and can be re-
connected to other field lines 

• Magnetic energy is transformed 
into kinetic energy (Uo >> Ui) 

• Plasma from different field 
lines can mix 

In ‘diffusion region’: 

Rm = µ0σlv ~1 
 

Thus: condition for 
frozen-in magnetic field 
breaks down. 

A second condition is 
that there are two 
regions of magnetic 
field pointing in 
opposite direction: 
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Reconnection and plasma convection 

Solar wind 
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Reconnection och plasma convection 

• Reconnection on the dayside 
“re-connects” the solar wind 
magnetic field and the 
geomagnetic field 

• In this way the plasma 
convection in the outer 
magnetosphere is driven 

• In the night side a second 
reconnection region drives 
the convection in the inner 
magnetosphere.  
The reconnection also heats 
the plasmasheet plasma.  
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Field transformations (relativistic) 

Relativistic transformations 
(perpendicular to the velocity u): 

x 

y 

S 
x’ 
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For  u << c: 
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electric field 

´= − ×E E u B
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Magnetospheric dynamics 

The solar wind generates 
an electric field 

ESW = - vSW × BSW 
 
which maps down to the 
ionosphere, since the field 
lines are very good 
conductors 

 

open magnetosphere 

Viewpoint 1 
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Magnetospheric dynamics 

The solar wind magnetic 
field draws the ionospheric 
plasma with it, since the 
field is frozen into the 
plasma. This motion 
induces an ionospheric 
electric field 

EI = - vI × BI 

open magnetosphere 
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Viewpoint 2 



Magnetospheric dynamics 

The electric field 
”propagates” to the 
ionosphere, since the field 
lines are good conductors, 
and thus equipotentials 

Plasma convection in the ionosphere 
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Do you recognize this 
pattern? 

Plasma convection in the ionosphere 
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Do you recognize this 
pattern? 

Plasma convection in the ionosphere 

80º 

70º 

60º 

24 

06 18 

E = 32 mV/m 
B = 53 000 nT 

12 
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Static, large-scale  MI-coupling  
Magnetospheric and ionospheric convection 

Kelley, 1989 

Ionospheric convection 
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Measurements of plasma convection in the magnetosphere 



Ems Ems 

Ems 

vSW 

vMS 
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Kelley, 1989 
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Magnetospheric plasma convection 
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Geomagnetic activity, definition 

• Geomagnetic activity = 
temporal variations in the 
geomagnetic field. 

• These variations are 
caused by temporal 
variations in the currents in 
the magnetosphere and 
ionosphere. 

ionosphere 

j 
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How can you observe these 
changing currents on Earth? 
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Geomagnetic activity, definition 

• Geomagnetic activity = 
temporal variations in the 
geomagnetic field. 

• These variations are 
caused by temporal 
variations in the currents in 
the magnetosphere and 
ionosphere. 

• The variations are observed 
by geomagnetic 
observatories B 

ionosphere 

j 
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Magnetic observatories  Magnetogram  
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Aurora during substorm 
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Aurora during substorm 
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Substorms - magnetosphere • GROWTH PHASE: When IMF 
southward, energy is pumped into 
magnetostail and is stored as 
megnetic energy 
 

• ONSET: After a certain time (~1 h) 
the magnetostail goes unstable and 
“snaps” due to fast reconnection. 
 

• EXPANSION/MAIN PHASE: 
Close to Earth the magnetosphere 
returns to dipole-like cinfiguration. 
Plasma is energized and injected 
into the inner parts of the 
magnetosphere. 
 

• RECOVERY PHASE: In the outer 
parts of the magnetotail a plasmoid 
is ejected. The magnetosphere 
returns to its ground state. 

reconnection 

plasmoid Energetic  particles 
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• GROWTH PHASE: When IMF 
southward, energy is pumped into 
magnetostail and is stored as 
megnetic energy 
 

• ONSET: After a certain time (~1 h) 
the magnetostail goes unstable and 
“snaps” due to fast reconnection. 
 

• EXPANSION/MAIN PHASE: 
Close to Earth the magnetosphere 
returns to dipole-like cinfiguration. 
Plasma is energized and injected 
into the inner parts of the 
magnetosphere. 
 

• RECOVERY PHASE: In the outer 
parts of the magnetotail a plasmoid 
is ejected. The magnetosphere 
returns to its ground state. 
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Substorms - magnetosphere 



Substorm Current Wedge (SCW) 

B 

Due to reconnection processes the resistivity increases here     
⇒     

Current takes another direction – through the ionosphere!  

ionosphere 

SCW 

B 

e- 

intense aurora 
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Substorm Current Wedge (SCW) 

ionosphere 

SCW 

B 

e- 

Intense aurora 
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Auroral Electrojet (AE) index 
The AE index Measures the strength of the substorm current 
wedge (SCW), by using the information from several magnetic 
observatories. 

substorms 

~1 – 3 h 



Geomagnetic storms 
Geomagnetic storms are extended periods with southward interplanetary 
magnetic field (IMF) and a large energy input into the magnetosphere.  
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Geomagnetic storms 
Auroral oval very extended 
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Geomagnetic storms and coronal 
mass ejections 

• Large geomagnetic storms are 
often associated with coronal 
mass ejections (CMEs) 

• Because of their magnetic 
structure, they will give long 
periods with a constant IMF 

• A typical time for a CME to 
pass Earth becomes T = x/v ~ 
10 RE/1000 kms-1 ~ 60 h 

B 
x 
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What happens with the 
geomagnetic field when the CME 

hits the magnetosphere? 
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Geomagnetic storms - phases 

Magnetogram 



Geomagnetic storms - phases 

Initial phase: the magnetic cloud of 
the CME compresses the 
geomagnetic field. 
Increase of B 

Main phase: Several 
particle injections 
increase the ring current. 
Weakening of B 

Recovery phase: ring 
current returns to normal 
strength. 
Recovery of B 
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Periodic geomagnetic activity 
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Space weather : consequences of solar and 
geomagnetic activity 

"conditions on the Sun 
and in the solar wind, 
magnetosphere, 
ionosphere and 
thermosphere that can 
influence the 
performance and 
reliability of space-borne 
and ground-based 
technological systems 
and can endanger human 
life or health." 

 

US National Space 
Weather Programme 
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Damage To Solar Panels 

Satellite power budgets can be very tight 
so degradation in solar panel performance 

is a serious issue. 

 

The damage is done by energetic particles 
which penetrate the surface of the panel 
and deposit a significant amount of energy 

inside the solar cells. This displaces the 
atoms within the cells and causes a loss in 

efficiency. 
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GIC – Geomagnetically Induced Currents 

B 
ionosphere 

j Faraday’s law 

E 

B
t

∂
= −∇×

∂
E
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GIC – Geomagnetically Induced Currents 

Can damage electric power grids 

Induced currents is pipelines 
increase corrosion. 
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Highly energetic particles 

• Particles in the radiation 
belts. 

• Particles from solar activity 
(solar flares, CME) 

• Cosmic radiation D
an

ge
r t

o 
as

tro
na

ut
s 

Disturb or damage electronics 
on satellites and aeoreplanes. 

Increase the rate of ionization in lower D 
region and thus increases absorption of 
radio waves.  
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Space weather on the internet 

www.spaceweather.com 

 

www.swpc.noaa.gov/SWN (Space Weather Prediction Centre) 

 

 



Last Minute! 
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Last Minute! 
 

 
• What was the most important thing of today’s lecture? Why? 

 
• What was the most unclear or difficult thing of today’s lecture, 

and why? 
 

• Other comments 
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