

Last lecture (7)

- Particle motion in magnetosphere
- Aurora

Today's lecture (8)

- Aurora on other planets
- How to measure currents in space
- Magnetospheric dynamics

Today

Activity	Date	<u>Time</u>	Room	<u>Subject</u>	Litterature
L1	31/8	13-15	V22	Course description, Introduction, The Sun 1, Plasma physics 1	CGF Ch 1, 5, (p 110- 113)
L2	3/9	15-17	Q36	The Sun 2, Plasma physics 2	CGF Ch 5 (p 114- 121), 6.3
L3	7/9	13-15	Q36	Solar wind, The ionosphere and atmosphere 1, Plasma physics 3	CGF Ch 6.1, 2.1- 2.6, 3.1-3.2, 3.5, LL Ch III, Extra material
T1	10/9	15-17	Q36	Mini-group work 1	
L4	14/9	13-15	E2	The ionosphere 2, Plasma physics 4	CGF Ch 3.4, 3.7, 3.8
T2	17/9	8-10	Q31	Mini-group work 2	
L5	17/9	15-17	L52	The Earth's magnetosphere 1, Plasma physics 5	CGF 4.1-4.3, LL Ch I, II, IV.A
L6	21/9	13-15	L52	The Earth's magnetosphere 2, Other magnetospheres	CGF Ch 4.6-4.9, LL Ch V.
Т3	24/9	16-18	Q36	Mini-group work 3	
L7	28/9	13-15	Q36	Aurora, Measurement methods in space plasmas and data analysis 1	CGF Ch 4.5, 10, LL Ch VI, Extra material
T4	1/10	15-17	V22	Mini-group work 4	
L8	5/10	13-15	M33	Space weather and geomagnetic storms	CGF Ch 4.4, LL Ch IV.B-C, VII.A-C
L9	6/10	8-10	Q36	Interstellar and intergalactic plasma, Cosmic radiation,	CGF Ch 7-9
T5	8/10	15-17	Q34	Mini-group work 5	
L10	12/10	13-15	Q36	Swedish and international space physics research.	
T6	15/10	15-17	Q33	Round-up.	
Written examination	28/10	8-13	Q21, Q26		

Mini-groupwork 4

a)

$$\rho_{SW} v_{SW}^2 = \left[\frac{\mu_0 a}{4\pi} \frac{1}{r^3}\right]^2 / 2\mu_0 \quad \Longrightarrow$$

$$r = \left(\frac{\mu_0 a}{4\pi}\right)^{1/3} \left(2\mu_0 \rho_{SW} v_{SW}^2\right)^{-1/6}$$

Assuming the solar wind consists of protons

$$\rho_{SW} = n_{e,SW} m_p = 1.7 \cdot 10^{-22} \ kg \ m^{-3}$$

Thus

 $r = 2.7 \cdot 10^9 \text{ m} \approx 38 \text{ R}_{\text{J}}$

Mini-groupwork 4

$$\rho_{SW} v_{SW}^{2} = \left[\frac{\mu_{0} a}{4\pi} \frac{1}{r^{3}}\right]^{2} / 2\mu_{0} + 2n_{e} k_{B} T \implies$$

$$\rho_{SW} v_{SW}^{2} = \left[\frac{\mu_{0} a}{4\pi} \frac{1}{r^{3}}\right]^{2} / 2\mu_{0} + 2n_{e0} \left(\frac{R_{J}}{r}\right)^{3} k_{B} T$$

Substitute $x = 1/r^3$. This gives you an equation on the form

 $ax^2 + bx + c = 0$

with

$$a = \left[\frac{\mu_0 a}{4\pi}\right]^2 / 2\mu_0 = 1.02 \cdot 10^{46}$$

$$b = 2n_{e0}R_J^3k_BT = 3.6 \times 10^{18}$$

$$c = -\rho_{SW} v_{SW}^2 = -2.7 \cdot 10^{-11}$$

$$x = \frac{-b}{2a} \pm \sqrt{\frac{b^2}{4a^2} - \frac{c}{a}} = -1.8 \cdot 10^{-28} + \sqrt{3.24 \cdot 10^{-56} + 2.635 \cdot 10^{-57}} =$$
$$= -1.8 \cdot 10^{-28} + 1.87 \cdot 10^{-28} = 7.18 \cdot 10^{-30}$$

From this you get $r \approx 73 \text{ R}_{\text{J}}$

Planetary magnetospheres

	Radius Earth radii	Spin period (days)	Equatorial field strength (μT)	Magnetic axis direction relative to spin axis	Polarity relative to Earth´s	Typical magneto- pause distance (planetary radii)	
Mercury	0.38	58.6	0.35	10 ⁰	Same	1.1	
Venus	0.95	243	< 0.03	-	-	1.1	
Earth	1.0	1	31	11.5 ⁰	Same	10	
Mars	0.53	1.02	0.065		Opposite	?	
Jupiter	11.18	0.41	410	10 ⁰	Opposite	60-100	
Saturn	9.42	0.44	40	<1 ⁰	````Qpposite	20-25	
Uranus	3.84	0.72	23	60 ⁰	Opposite	18-25	
Neptune	3.93	0.74	20-150 ^{*)}	47 ⁰	Opposițe	26 ^{**)}	
*) The magnetic field differs greatly from a dipole field. The numbers represent							

*) The magnetic field differs greatly from a dipole field. The numbers represent maximum and minimum strength at the planetary surface

**) Based on single passage

Very weak magnetic fields

Relative size of the magnetospheres

Comparative magnetospheres In situ observations

Mariner 10

Pioneer 10

Space probe	Celestial body	Observations
Mariner 10	Mercury	1974 – 1975
Messenger *	Mercury	2008 - 2015
Pioneer 10,11	Jupiter, Saturn	1973 – 1979
Voyager 1,2	Jupiter, Saturn, Uranus, Neptune	1977 – 1989
Ulysses	Jupiter	1992
Galileo*	Jupiter	1995 – 2003
Cassini*	Jupiter, Saturn	2004 -
New Horizons	Jupiter	2007
Rosetta	Churymov-Gerasimenko	2014 - 2016
* Orbiters		

Pioneer 11

Voyager 1 and 2

New Horizons

Messenger

Comparative magnetospheres Solar wind properties

Solar wind velocity

Solar wind electron density

Comparative magnetospheres

Observed vs. theoretical standoff-distance

Other other magnetospheres Heliosphere

INTO THE UNKNOWN

The interstellar magnetic field is distorting the heliosphere

[[]Opher, 2007]

Heliosphere

- Reaches approximately 100 AU into space (=1.5x10¹³ m)
- Voyager sonds are approaching/encountering the heliopause right now

Collisions - emissions

Emissions

Oxygen emissions

Why is there no red emissions at lower altitude?

Oxygen emissions

The red emission line is suppressed by collisions at lower altitudes due the its long transition time. (When an excited atom collides with another atom, is is de-excited without any emission.)

Larger scales

Foto från DMSP-satelliten

Auroral ovals

Dynamics Explorer

Polar

The auroral oval is the projection of the plasmasheet onto the atmosphere

Mystery!

The particles in the plasmasheet do not have high enough energy to create aurora visible to the eye.

Magnetic mirror

The magnetic moment μ is an *adiabatic invariant*.

$$\mu = \frac{mv_{\perp}^2}{2B} = \frac{mv^2 \sin^2 \alpha}{2B}$$

 $mv^2/2$ constant (energy conservation)

 $\frac{\sin^2 \alpha}{B} = konst$

particle turns when $\alpha = 90^{\circ}$

$$B_{turn} = B / \sin^2 \alpha$$

If maximal B-field is B_{max} a particle with pitch angle α can only be turned around if

$$B_{turn} = B / \sin^2 \alpha \le B_{\max}$$

$$\alpha > \alpha_{fl} = \arcsin \sqrt{B / B_{max}}$$

Particles in *loss cone* :

$$\alpha < \alpha_{_{fl}}$$

Why particle acceleration?

- The magnetosphere often seems to act as a current generator.
- The lower down you are
 on the field line, the more particles have been reflected by the magnetic mirror.
- At low altitudes there are not enough electrons to carry the current.

Why particle acceleration?

- Electrons are accelerated downwards by upward E-field.
- This increases the pitch-angle of the electrons, and more electrons can reach the ionosphere, where the current can be closed.

Distribution function

Why particle acceleration?

- Electrons are accelerated downwards by upward E-field.
- This increases the pitch-angle of the electrons, and more electrons can reach the ionosphere, where the current can be closed.

Satellite signatures of U potential

Measurements made by the ISEE satellite (Mozer et al., 1977)

Acceleration regions

Auroral acceleration region typically situated at altitude of 1-3 R_E

EF2240 Space Physics 2014

Auroral spirals

Develop when arcs become unstable

Spirals – Kelvin-Helmholz instability

Satellite signatures of U potential

Measurements made by the ISEE satellite (Mozer et al., 1977)

Spirals – Kelvin-Helmholz instability

Mercury

- No atmosphere
- X-ray aurora??? Can possibly be created by electrons colliding directly with the planetary surface and lose their energy in one single collision.

Jupiter aurora

Foto från Hubble Space Telescope

- Jupiter's aurora has a power of ~1000 TW (compare Earth: ~100 GW, nuclear power plant: ~1 GW)
- Note the "extra" oval on Io's flux tube!

Jupiter and lo

The Jupiter moon Io is very volcanically active, and deposes large amounts of dust and gas in Jupiter's magnetosphere. This is ionized by the sunlight, and the charged plasma partícles follow Jupiter's magnetic field lines towards the atmosphere and cause auroral emissions.

Aurora of the other planets

Saturn

Saturnus' aurora: not noticeably different from Jupiter's, but much weaker. (Total power about the same as Earth's aurora.) Uranus: Auora detected in UV. Probably associated with Uranus' ring current/radiotion belts and not very dynamic.

Neptunus: weak UV aurora detected.

Mars, Venus: No aurora.

Prerequisites for...

Life

- Energy source (sun)
- Atmosphere
- Magnetic field
- Water

Aurora

- Energy source (sun)
- Atmosphere
- Magnetic field

At what planets do you expect aurora to exist?

Earth, Mercury, Jupiter, Saturn

Yellow

Earth, Venus, Jupiter, Saturn, Uranus, Neptune

Earth, Mars, Jupiter, Saturn, Uranus, Neptune

Earth, Jupiter, Saturn, Uranus, Neptune

What do we need to have an aurora?

- Magnetic field (to guide the plasma particles towards the planet)
- Atmosphere (to create emissions)

At what planets do you expect aurora to exist?

Earth, Jupiter, Saturn, Uranus, Neptune

On space weather and viewing aurora

Some space weather sites

http://spaceweather.com/

http://www.esa-spaceweather.net/

http://sunearthday.nasa.gov/swac/

http://www.noaawatch.gov/themes/spac e.php

http://www.windows2universe.org/spac eweather/more_details.html **Kiruna**

Kiruna all-sky camera: http://www.irf.se/allsky/rtasc.php

http://sunearthday.nasa.gov/swac/ tutorials/aur_kiruna.php

Forecasts: http://flare.lund.irf.se/rwc/aurora/ http://www.irf.se/Observatory/?li nk[Allskycamera]=Aurora_sp_statistics

Birkeland currents in the auroral oval

How can you measure currents in space?

Current sheet approximation

Approximate currents by thin current sheets with infinite size in the x- och z-directions.

Current sheet approximation

What will the magnetic field around such a current configuration be? Start by approximating with line currents to get a qualitative picture.

B j O O

The closer you place the line currents, the more the magnetic fields between the line currents will cancel

Current sheet approximation and Ampére's law

Ampére's law (no time dependence):

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{j}$$

$$j_z = -\frac{1}{\mu_0} \frac{\partial B_x}{\partial y}$$

Current sheet - example

$$j_z = -\frac{1}{\mu_0} \frac{\partial B_x}{\partial y}$$

What is the direction of the current in current sheet 1?

$$j_z = -\frac{1}{\mu_0} \frac{\partial B_x}{\partial y}$$

What is the direction of the current in current sheet 1?

Into the ionosphere

$$j_{z} = -\frac{1}{\mu_{0}} \frac{\partial B_{x}}{\partial y} \qquad \frac{\partial B_{x}}{\partial y} = \frac{\partial B_{East}}{\partial y} > 0 \qquad \text{Blue}$$

$$\Rightarrow \qquad j_{z} < 0$$

$$j_z = -\frac{1}{\mu_0} \frac{\partial B_x}{\partial y}$$

1)
$$\frac{\partial B_x}{\partial y} > 0 \implies j_z < 0$$
 Into the ionosphere
2) $\frac{\partial B_x}{\partial y} < 0 \implies j_z > 0$ Out of the ionosphere
3) $\frac{\partial B_x}{\partial y} > 0 \implies j_z < 0$ Into the ionosphere
4) $\frac{\partial B_x}{\partial y} < 0 \implies j_z > 0$ Out of the ionosphere

Birkeland currents in the auroral oval

Frozen in magnetic field lines

In fluid description of plasma two plasma elements that are connected by a common magnetic field line at time t_1 will be so at any other time t_2 .

This applies if the magnetic Reynolds number is large:

$$R_m = \mu_0 \sigma l_c v_c >> 1$$

An example of the collective behaviour of plasmas.

Magnetic reconnection

Reconnection

- Field lines are "cut" and can be reconnected to other field lines
- Magnetic energy is transformed into kinetic energy $(U_o >> U_i)$

In 'diffusion region':

 $R_m = \mu_0 \sigma lv ~ \text{-} 1$

Thus: condition for frozen-in magnetic field breaks down.

A second condition is that there are two regions of magnetic field pointing in opposite direction:

• Plasma from different field lines can mix

Reconnection and plasma convection

Reconnection och plasma convection

- Reconnection on the dayside "re-connects" the solar wind magnetic field and the geomagnetic field
- In this way the plasma convection in the outer magnetosphere is driven-
- In the night side a second reconnection region drives the convection in the inner magnetosphere. The reconnection also heats the plasmasheet plasma.

What happens if IMF is northward instead?

Magnetospheric dynamics

open magnetosphere

closed magnetosphere

southward

Interplanetary magnetic field (IMF)

Magnetospheric dynamics

open magnetosphere

Magnetospheric topology

Reconnection

- Field lines are "cut" and can be reconnected to other field lines
- Magnetic energy is transformed into kinetic energy $(U_o >> U_i)$

In 'diffusion region':

 $R_m = \mu_0 \sigma lv ~ \text{-} 1$

Thus: condition for frozen-in magnetic field breaks down.

A second condition is that there are two regions of magnetic field pointing in opposite direction:

• Plasma from different field lines can mix

Reconnection and plasma convection

Reconnection och plasma convection

- Reconnection on the dayside "re-connects" the solar wind magnetic field and the geomagnetic field
- In this way the plasma convection in the outer magnetosphere is driven-
- In the night side a second reconnection region drives the convection in the inner magnetosphere. The reconnection also heats the plasmasheet plasma.

Field transformations (relativistic)

Relativistic transformations (perpendicular to the velocity *u*):

$$\mathbf{E}' = \frac{\mathbf{E} + \mathbf{u} \times \mathbf{B}}{\sqrt{1 - u^2/c^2}}$$
$$\mathbf{B}' = \frac{\mathbf{B} - (\mathbf{u}/c^2) \times \mathbf{E}}{\sqrt{1 - u^2/c^2}}$$

For u << *c*:

 $\mathbf{B'} = \mathbf{B}$

Magnetospheric dynamics open magnetosphere

Viewpoint 1

The solar wind generates an electric field

$$\mathbf{E}_{\mathrm{SW}} = - \mathbf{v}_{\mathrm{SW}} \times \mathbf{B}_{\mathrm{SW}}$$

which maps down to the ionosphere, since the field lines are very good conductors

Magnetospheric dynamics open magnetosphere

Viewpoint 2

The solar wind magnetic field draws the ionospheric plasma with it, since the field is frozen into the plasma. This motion induces an ionospheric electric field

 $\mathbf{E}_{\mathrm{I}} = \textbf{-} \mathbf{v}_{\mathrm{I}} \times \mathbf{B}_{\mathrm{I}}$

Magnetospheric dynamics

Plasma convection in the ionosphere

The electric field "propagates" to the ionosphere, since the field lines are good conductors, and thus equipotentials

Do you recognize this pattern?

Plasma convection in the ionosphere

Do you recognize this pattern?

Plasma convection in the ionosphere

Static, large-scale MI-coupling

Magnetospheric and ionospheric convection

Kelley, 1989

Measurements of plasma convection in the magnetosphere

Magnetospheric plasma convection

Geomagnetic activity, definition

- Geomagnetic activity = temporal variations in the geomagnetic field.
- These variations are caused by temporal variations in the currents in the magnetosphere and ionosphere.

How can you observe these changing currents on Earth?

Geomagnetic activity, definition

- Geomagnetic activity = temporal variations in the geomagnetic field.
- These variations are caused by temporal variations in the currents in the magnetosphere and ionosphere.
- The variations are observed by geomagnetic observatories

Magnetic observatories

Magnetogram

Aurora during substorm

Aurora during substorm

Sub-storm Activity: Satellite images taken 12 minutes apart.

Substorms - magnetosphere · GR

reconnection

- **GROWTH PHASE**: When IMF southward, energy is pumped into magnetostail and is stored as megnetic energy
- **ONSET:** After a certain time (~1 h) the magnetostail goes unstable and "snaps" due to fast reconnection.
- EXPANSION/MAIN PHASE:

Close to Earth the magnetosphere returns to dipole-like cinfiguration. Plasma is energized and injected into the inner parts of the magnetosphere.

• **RECOVERY PHASE**: In the outer parts of the magnetotail a *plasmoid* is ejected. The magnetosphere returns to its ground state.

Substorms - magnetosphere

- **GROWTH PHASE**: When IMF southward, energy is pumped into magnetostail and is stored as megnetic energy
- **ONSET:** After a certain time (~1 h) the magnetostail goes unstable and "snaps" due to fast reconnection.
- EXPANSION/MAIN PHASE: Close to Earth the magnetosphere returns to dipole-like cinfiguration. Plasma is energized and injected into the inner parts of the magnetosphere.
- **RECOVERY PHASE**: In the outer parts of the magnetotail a *plasmoid* is ejected. The magnetosphere returns to its ground state.

Substorm Current Wedge (SCW)

Substorm Current Wedge (SCW)

Auroral Electrojet (AE) index

The AE index Measures the strength of the substorm current wedge (SCW), by using the information from several magnetic observatories.

Geomagnetic storms

Geomagnetic storms are extended periods with southward interplanetary magnetic field (IMF) and a large energy input into the magnetosphere.

Geomagnetic storms

Auroral oval very extended

Geomagnetic storms and coronal mass ejections

- Large geomagnetic storms are often associated with coronal mass ejections (CMEs)
- Because of their magnetic structure, they will give long periods with a constant IMF
- A typical time for a CME to pass Earth becomes $T = x/v \sim 10 \text{ R}_{\text{E}}/1000 \text{ kms}^{-1} \sim 60 \text{ h}$

What happens with the geomagnetic field when the CME hits the magnetosphere?

Geomagnetic storms - phases

Magnetogram

Geomagnetic storms - phases

Periodic geomagnetic activity

Space weather : consequences of solar and geomagnetic activity

"conditions on the Sun and in the solar wind, magnetosphere, ionosphere and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and can endanger human life or health."

US National Space Weather Programme

Damage To Solar Panels

Satellite power budgets can be very tight so degradation in solar panel performance is a serious issue.

The damage is done by energetic particles which penetrate the surface of the panel and deposit a significant amount of energy inside the solar cells. This displaces the atoms within the cells and causes a loss in efficiency.

GIC – Geomagnetically Induced Currents

GIC – Geomagnetically Induced Currents

Can damage electric power grids

PJM Public Service Step Up Transformer Severe internal damage caused by the space storm of 13 March, 1989

Induced currents is pipelines increase corrosion.

Highly energetic particles

- Particles in the radiation belts.
- Particles from solar activity (solar flares, CME)

Disturb or damage electronics on satellites and aeoreplanes.

Increase the rate of ionization in lower D region and thus increases absorption of radio waves.

Space weather on the internet

www.spaceweather.com

www.swpc.noaa.gov/SWN (Space Weather Prediction Centre)

Last Minute!

EF2240 Space Physics 2015

Last Minute!

- What was the most important thing of today's lecture? Why?
- What was the most unclear or difficult thing of today's lecture, and why?
- Other comments