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Lecture 11: Dimensionality Reduction
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Principal Component Analysis (PCA)

1. Maximizing variance

X,

U

Centroid E(x)

Mean vector of x :
Covariance matrix:

Number of samples
E(x)=(1/r)y x
2= E((x- E(0))(x - E(x))")

Our keywords today:

Unsupervised learning

e Dimensionality reduction
— Principal Component Analysis (PCA)

Discriminant function
— Similarity measures: angle, projection length

Subspace Methods

1. Maximum variance criterion

Reduce the effective number of variables
(only dealing with components with larger variances)

E(x"u, - E(x"u,))*) > Maximize (i=1,...,p)
= E((uzT (X - E(x)))z) Condition:
= ul E((x = EQ))x = E0) u, =u/Zu, | uiu; =9

Covariance matrix

max[t(U"ZU)]

The transformation matrix U consists of p columns
that are eigenvectors of the covariance matrix, Z,
corresponding to largest eigenvalues.



Example 3-d to 2-d: Ninety observations simulated in 3-d
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First principal component

The first 2 principal component directions span the plane that best fits the data.
It minimizes the sum of squared distances from each point to the plane.

Figure from
An Introduction to Statistical Learning (James et al.)

2. Minimum squared distance criterion

Averaged squared error between x and its
approximation to be minimized by a set {,,**",%,,}

i X residual

E(|x=x"|I") >minimize (i=1,...,p)
V4
Approximated x' = E(xrui)ui

1 [Pl |* =]l %* ->maximize

The basis consists of p columns that are eigenvectors
of the autocorrelation matrix, O, corresponding to
largest eigenvalues.

Principal Component Analysis (PCA)

2. Min. approximation error

Xy
U

Distribution is viewed
from the origin,
not from the centroid

X

Autocorrelation matrix: 0=E(x")

PCA example 1: Hand-written digits
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Feature extraction
Pattern vectors: normalized & blurred patterns
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(figure by Y. Kurosawa)




Example 2: Human face classificaiton

Basis vectors of a person: someone’s dictionary

(Eigenvectors from a large collection of his face)

(figure by K. Fukui)

Concept of subspace

Subspace L is a collection of n-d vectors:
spanned by a basis, a set of linearly independent vectors

L(b,,--b,)={zlz= i&ib,.} (5, ER.b, ER")

Dimension of a subspace: A
the number of base vectors '

p=dim(Ll) <<n

Conveniently represented
by orthonormal basis {u,,---,u,}

Example 3: Ship classification (profiles)

Profile vectors

Principal Component Analysis (PCA)
N2
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Eigenvectors

%

Dictionary

Eigenvectors for the greatest eigenvalues

o Ve -

e Variations of “9” covered by a 2-d subspace
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(figure by Y. Kurosawa)



Background: Schematic of classification

Training
Samples
(labeled)

New inputs
(test data)
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Testing phase

e Various ways to measure the distance
— Euclidean / Mahalanobis distance
— Angle between vectors
— Projection length on subspaces

¢ Classification methods
— Discriminant function
— Subspace method

Training phase

e Given: Limited number of labeled data
(samples whose classes are known)

¢ The dimensionality often too high for limited
number of samples

One approach to this is to find redundant variables
and discard them, i.e. dimensionality reduction

(without losing essential information)

Information compression: to extract the class
characteristics and throw away the rest!

Nearest Neighbor methods (revisiting)

* Binary classification c
1

% . _Unseen point x
— N1 samples of class Ci M E,. . P

el
— N2 samples of class C2 g
P 00808200080 C2
% % 8 o
[e)e]

— Unseen data x

- Compute distances
to N1 + N2 samples

n-dim feature space

« Find the nearest neighbour
- classify x to the same class




Discriminant function

* Need to remember all the samples?
— In &-NN we simply used all the training data
— Still cover only a small portion of possible patterns

e Define a class by a few representative patterns
— e.g. the centroid of class distribution

o** (i Extreme case: one vector per class

Setting the “don’t know” category

e Reject if the distance is above the threshold

Ci

Formulation: one prototype per class

— . 1 K
K classes: C ),"',C( )
K oto es: 1 K

pr t typ S. a() ...,a( )

b

Consider Euclidean distances between the new input x
O

and the prototypes: I x—g® H2= I x||2 —2a(”Tx+ | a

—> Choose the class that minimises the distance.

Discriminant function

Direction cosine as similarity

Think of the new input and the prototype as vectors.
Compute cosine between the input vector x and vector
(x"a")

—————=c0s 4
[l a® |

g"(x)=

“Simple similarity”

0 < cos® 4 <1 (The closer it is to 1, the more likely to be in C”)

Now let’s extend the class representative to
a set of basis vectors — spans a subspace




Su bspace Methods Framework of Subspace Method

) o o ) 1. Training: for each class, compute a low-dimensional
¢ Exploit localization of pattern distributions subspace that represents the distribution in the class.
o (K)
Samples in the same class such as a digit (or face w50 )
images of a person) are similar to each other. 2. Tes‘nng:‘determlne the class of new unk'nown mpu'F by
They are localized in a subspace spanned by a set of basis u:. comparing which subspace best approximates the input.
Training Testing
ui : reference vectors
(orthonormal basis) %)é)o .¢.o. ..... Input
vector/v subspace 1 — Similarity 1
X subspace 1 O —, . Similarity 2
a.k.a CLAFIC \fubsp.ace 2 —» Similarity §
CLAss-Featuring Information Compression subspace 2 Projection :
: subspace K — Similarity K
subspace K Ly, u )
Similarity in Subspace Method Similarity in Subspace Method (example)
Projection length to the subspace Projection length to the subspace
P-1 Input x
2
S = 2 (x,u;) I
=0 S 2 p-1 1
s di i fsub / 2
p: dimension ot subspace ,,’ S = (x, l/li) p: the dimensionality of class subspace
ui . reference vectors = (can be determined for each class, how?)
(orthonormal basis) ]
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Dimensionality of a class subspace

Eigenvalues of autocorrelation matrix Q: 4, =..4

= /lp =0
The number of dimensions to be used:
— Too low - low capability to represent the class
— Too high—> issue of overlapping across classes
eCumulative contributions
I Choose a dimension p

Y4, .
a(p”y =2 ' a(p)=x=a(p

© for each class "’

D +1) (x: common value)

P
EA,' The projection length to the subspace is
. made uniform.

Experiments still needed to find a good dimensionality

Useful dimension for classification?

Ideal distributions of input pattern vectors:
= Patterns from an identical class be close
= Patterns from different classes be apart

X, X,

X X

-> Overlapping distributions harmful for classification

Similarity in weighted Subspace Method

-

S = E‘u’ (x,ul.)z p: the dimension of subspace

i=0 T T weight: U,
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(figure by Y. Kurosawa)

Ratio of between-classes variance to
within-class variance

Within-class variance Average in class @
2 1< (i) T (@)
1 1
Oy =—2 (x=E"(x)) (x=E"(x))
_~re.&h
Total # of samples

(i)

Average overall
Between-class variance
K

o= ) r<<E O (x)~ E@)) (B (x) - E(x))

Number of samples in class o

Within-class var. between-class var. ratio

2
J = O3 Between-class variance In short: distance between classes
g O'sz Within-class var in ave | normalized by distance within class

- the larger the better!



