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Course content

Part 1

I Lec 1: Introduction to WSNs
I Lec 2: Introduction to Programming WSNs

Part 2

I Lec 3: Wireless Channel
I Lec 4: Physical Layer
I Lec 5: Medium Access Control Layer
I Lec 6: Routing

Part 3

I Lec 7: Distributed Detection
I Lec 8: Static Distributed Estimation
I Lec 9: Dynamic Distributed Estimation
I Lec 10: Positioning and Localization
I Lec 11: Time Synchronization

Part 4

I Lec 12: Wireless Sensor Network Control Systems 1
I Lec 13: Wireless Sensor Network Control Systems 2
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Previous lecture

How to synchronize nodes?
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Today’s learning goals

How the process state dynamics over time are mathematically modeled?

How such state dynamics can be controlled by closing the loop
process→controller→process?

How to discretize the continuous time model of the dynamics?

What is the concept of state stability of closed loop control systems?
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Outline

Wireless Sensor Network Control Systems (WSNCS)

State space description of a control system

Stability and asymptotic stability of a control system
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Wireless Sensor Network Control Systems (WSNCS)

Closed-loop system

Plant/
Process

x(t)
x(kh) sampled state

WSN
IEEE 802.15.4

Wireless HART

Controller
u(t)

u(kh) sampled

actuation
line

y(t)
y(kh) sampled communication

line
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Wireless Sensor Network Control Systems

k: discrete time

h: sampling interval

u (kh): control decision

x (kh): state of the process/plant

y (kh): output of the state (measured by sensors)

The GOAL of the controller is to bring the state x (kh) in a desired region by
taking measurements y (kh) and a control decision u (kh)

Delay and packet loss probability affect the way the measurements y (t) are received
in the controller

This lecture gives the basic control theory background for WSNCS. The effect of the
network on the controller is studied next lecture
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Continuous time description

Let x (t) be the state of the system (temperature, position,. . . )
We assume that the physical process is described by the time-invariant state space model

Linear model

dx (t)

dt

∆
= ẋ (t) = Ax (t) +Bu (t) state model (1)

y (t) = Cx (t) +Du (t) measurement model

where A,B,C,D are assumed to be known matrices
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Continuous time description

Assuming that x (kh) is known, then the solution of the differential equation (1) is

x (t) = eA(t−kh) · x (kh) +

t∫
kh

eA(t−τ)Bu (t) dτ t > kh (2)

The control decision u (t) can be properly chosen to bring the system state x (t) in a
desired region.
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Example: ”The step response”

Suppose x (0) = 0 and x (t) ∈ R

The step response is defined as the evolution of the state x (t), i.e., the solution of (1),

for an input u (t) =

{
0 t ≤ 0
1 t > 0

t

x(t)

u(t)

input

output

The state may evolve to a stabilized condition after possible oscillations
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Discretization of state space model

Assume u (t) constant in the interval kh ≤ t ≤ kh+ h

Then, (2) becomes

x (t) = eA(t−kh) · x (kh) +

t∫
kh

eA(t−τ)dτBu (t) =

= eA(t−kh) · x (kh) +

t−kh∫
0

eAτdτBu (kh) = φtx (kh) + Γtu (kh)

Let t = kh+ h

x (kh+ h) = φx (kh) + Γu (kh) (3)

where φ = eAh and Γ =

h∫
0

eAτdτB
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Discretization of state space model

Recursively from (3),

x (kh+ 2h) = φx (kh+ h) + Γu (kh+ h)

Therefore, the solution of (3), given x (0) and u (kh) ∀k, is

x (kh) = φkx (0) +

k−1∑
j=0

φk−1−jΓu (jh)

Note that the matrix exponential eAh can be expressed equivalently as a power series

eAh = I +Ah+
A2h2

2
+ . . .
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Non-linear model of the state

Observation
Control decision is chosen as a function of the state

u (t) = f (x (t))

Therefore, consider a state that evolves according to a non-linear law

ẋ (t) = a (x (t))

y (t) = c (x (t))

where a and c are be non-linear functions in general

What is the solution of that system?
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Non-linear model of the state

Non-linear differential equation

x (t+ kh) = x (t) +

t+kh∫
t

a (x (τ)) dτ

In general, the integral difficult to solve.

However, by deriving opportune upper bounds of a(x(t)), it is possible to show
important properties of the system (e.g., stability).
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Stability

Let us consider the discrete-time differential equation

x (kh+ h) = g (x (kh)) (4)

where g can be linear or non-linear

Definition
A specific solution of (4), x∗ (kh), is called stable,
if ∀ε > 0 ∃δ (ε) : ∀ other solution x (kh)

‖x (0)− x∗ (0)‖ ≤ δ ⇒ ‖x (kh)− x∗ (kh)‖ ≤ ε ∀k
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Asymptotic stability

We consider the same equation as on the previous slide:

x (kh+ h) = g (x (kh)) (5)

where g can be linear or non-linear.

Definition
A specific solution x∗(k) of (5) is called asymptotically stable if it is stable and if there
is a δ > 0 such that for every other solution x(k) it holds that:

‖x (0)− x∗ (0)‖ ≤ δ ⇒ ‖x (k)− x∗ (k)‖ → 0 as k →∞
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Example 1

Assume that x∗(kh) = 0 is a solution of (5). The figure shows the typical behaviour of
other solutions in case x∗(kh) is stable or asymptotically stable.

k

‖x(k)‖

x(0)

δ

ε

stability
asymptotic stability

x∗ (k) = 0
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The linear case

Consider a linear difference equation

x (kh+ h) = A · x (kh) (6)

where A known matrix ∈ Rn×n

Definition
A linear difference equation of the form (6) is (asymptotically) stable if the constant
solution x∗(k) = 0 is (asymptotically) stable.

How do we choose matrix A in order to have

1. stability?

2. asymptotic stability?
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The linear case

The answer is given by the following theorem:

Theorem (Stability of linear difference equations)

Let ρ(A) = max{|λ|, λ is an eigenvalue of A}.
(i) x (kh+ h) = A · x (kh) is stable if and only ρ(A) ≤ 1.

(ii) x (kh+ h) = A · x (kh) is asymptotically stable if and only ρ(A) < 1.
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The linear case: intuition

1. ‖x (0)− 0‖ ≤ δ ⇒ ‖x (kh)‖ ≤ ε ?

‖x (kh)‖ = ‖A · x ((k − 1)h)‖ = . . . =
∥∥Ak · x (0)

∥∥ ≤ ∥∥Ak∥∥ · ‖x (0)‖ ≤ ‖A‖k · δ

To achieve stability, choose matrix A that does not grow with k

This is when the maximum absolute eigenvalue of A, ρ (A) ≤ 1

2. lim
k→∞

‖x (kh)‖ ≤ lim
k→∞

‖A‖k · δ → 0

In this case, ρ (A) < 1

In scalar case, A is constant and ρ (A) = A

If the eigenvalues are larger than 1 ⇒ instability
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Summary

We have seen the basic aspects of control systems

I Mathematical description of the state evolution

I Discretization

I Stability
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Next lecture

WSNCS, robustness to packet delays and losses
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