Principles of Wireless Sensor Networks

https://www.kth.se/social/course/EL2745/

Lecture 12 Wireless Sensor Network Control Systems 1

Piergiuseppe Di Marco

Ericsson Research e-mail:pidm@kth.se http://pidm.droppages.com/

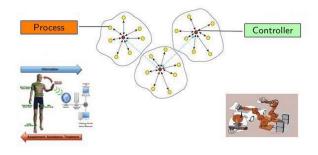
Royal Institute of Technology Stockholm, Sweden

October 7, 2015

Course content

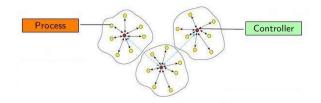
- Part 1
 - ► Lec 1: Introduction to WSNs
 - Lec 2: Introduction to Programming WSNs
- Part 2
 - ► Lec 3: Wireless Channel
 - Lec 4: Physical Layer
 - Lec 5: Medium Access Control Layer
 - ► Lec 6: Routing
- Part 3
 - ► Lec 7: Distributed Detection
 - Lec 8: Static Distributed Estimation
 - Lec 9: Dynamic Distributed Estimation
 - ► Lec 10: Positioning and Localization
 - ► Lec 11: Time Synchronization
- Part 4
 - Lec 12: Wireless Sensor Network Control Systems 1
 - Lec 13: Wireless Sensor Network Control Systems 2

Previous lecture



How to synchronize nodes?

Today's learning goals



- How the process state dynamics over time are mathematically modeled?
- How such state dynamics can be controlled by closing the loop process->controller->process?
- How to discretize the continuous time model of the dynamics?
- What is the concept of state stability of closed loop control systems?

- Wireless Sensor Network Control Systems (WSNCS)
- State space description of a control system
- Stability and asymptotic stability of a control system

Outline

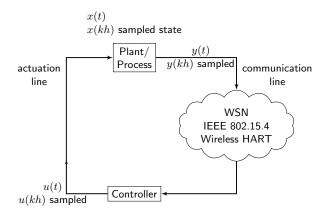
• Wireless Sensor Network Control Systems (WSNCS)

• State space description of a control system

- Linear model
 - Continuous time description
 - Discretization of state space model
- Non-linear model
- Stability and asymptotic stability of a control system

Wireless Sensor Network Control Systems (WSNCS)

Closed-loop system



Wireless Sensor Network Control Systems

- k: discrete time
- h: sampling interval
- u(kh): control decision
- x(kh): state of the process/plant
- y(kh): output of the state (measured by sensors)
- The **GOAL** of the controller is to bring the state x(kh) in a desired region by taking measurements y(kh) and a control decision u(kh)
- $\bullet\,$ Delay and packet loss probability affect the way the measurements $y\left(t\right)$ are received in the controller

This lecture gives the basic control theory background for WSNCS. The effect of the network on the controller is studied next lecture

Outline

• Wireless Sensor Network Control Systems (WSNCS)

• State space description of a control system

- Linear model
 - Continuous time description
 - Discretization of state space model
- Non-linear model
- Stability and asymptotic stability of a control system

Continuous time description

Let $x\left(t
ight)$ be the state of the system (temperature, position,...)

We assume that the physical process is described by the time-invariant state space model

Linear model		
$\frac{dx\left(t\right)}{dt} \triangleq \dot{x}\left(t\right) = Ax\left(t\right) + Bu\left(t\right)$	state model	(1)
$y\left(t\right) = Cx\left(t\right) + Du\left(t\right)$	measurement model	
where A, B, C, D are assumed to be known matrices		

Continuous time description

Assuming that x(kh) is known, then the solution of the differential equation (1) is

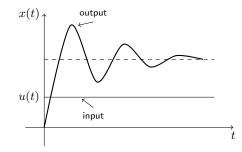
$$x(t) = e^{A(t-kh)} \cdot x(kh) + \int_{kh}^{t} e^{A(t-\tau)} Bu(t) d\tau \qquad t > kh$$
(2)

The control decision $u\left(t\right)$ can be properly chosen to bring the system state $x\left(t\right)$ in a desired region.

Example: "The step response"

Suppose x(0) = 0 and $x(t) \in \mathbb{R}$

The step response is defined as the evolution of the state x(t), i.e., the solution of (1), for an input $u(t) = \begin{cases} 0 & t \leq 0 \\ 1 & t > 0 \end{cases}$



The state may evolve to a stabilized condition after possible oscillations

Outline

• Wireless Sensor Network Control Systems (WSNCS)

• State space description of a control system

- Linear model
 - Continuous time description
 - Discretization of state space model
- Non-linear model
- Stability and asymptotic stability of a control system

Discretization of state space model

Assume $u\left(t\right)$ constant in the interval $kh \leq t \leq kh + h$

Then, (2) becomes

$$x(t) = e^{A(t-kh)} \cdot x(kh) + \int_{kh}^{t} e^{A(t-\tau)} d\tau Bu(t) =$$
$$= e^{A(t-kh)} \cdot x(kh) + \int_{0}^{t-kh} e^{A\tau} d\tau Bu(kh) = \phi_t x(kh) + \Gamma_t u(kh)$$

Let t = kh + h

$$x(kh+h) = \phi x(kh) + \Gamma u(kh)$$
(3)

where
$$\phi = e^{Ah}$$
 and $\Gamma = \int\limits_{0}^{h} e^{A\tau} d\tau B$

Discretization of state space model

Recursively from (3),

$$x (kh + 2h) = \phi x (kh + h) + \Gamma u (kh + h)$$

Therefore, the solution of (3), given x(0) and $u(kh) \forall k$, is

$$x(kh) = \phi^{k} x(0) + \sum_{j=0}^{k-1} \phi^{k-1-j} \Gamma u(jh)$$

Note that the matrix exponential e^{Ah} can be expressed equivalently as a power series

$$e^{Ah} = I + Ah + \frac{A^2h^2}{2} + \dots$$

Outline

• Wireless Sensor Network Control Systems (WSNCS)

• State space description of a control system

- Linear model
 - Continuous time description
 - Discretization of state space model
- Non-linear model
- Stability and asymptotic stability of a control system

Non-linear model of the state

Observation

Control decision is chosen as a function of the state

 $u\left(t\right) = f\left(x\left(t\right)\right)$

Therefore, consider a state that evolves according to a non-linear law

 $\dot{x}(t) = a(x(t))$ y(t) = c(x(t))

where a and c are be non-linear functions in general

What is the solution of that system?

Non-linear model of the state

Non-linear differential equation

$$x(t + kh) = x(t) + \int_{t}^{t+kh} a(x(\tau)) d\tau$$

- In general, the integral difficult to solve.
- However, by deriving opportune upper bounds of a(x(t)), it is possible to show important properties of the system (e.g., stability).

Outline

- Wireless Sensor Network Control Systems (WSNCS)
- State space description of a control system
 - Linear model
 - Continuous time description
 - Discretization of state space model
 - Non-linear model

• Stability and asymptotic stability of a control system

Stability

Let us consider the discrete-time differential equation

$$x(kh+h) = g(x(kh))$$
(4)

where g can be linear or non-linear

Definition

A specific solution of (4), $x^*(kh)$, is called stable, if $\forall \varepsilon > 0 \quad \exists \delta(\varepsilon) : \forall$ other solution x(kh)

 $\left\|x\left(0\right)-x^{*}\left(0\right)\right\| \leq \delta \Rightarrow \left\|x\left(kh\right)-x^{*}\left(kh\right)\right\| \leq \varepsilon \quad \forall k$

Asymptotic stability

We consider the same equation as on the previous slide:

$$x(kh+h) = g(x(kh))$$
(5)

where g can be linear or non-linear.

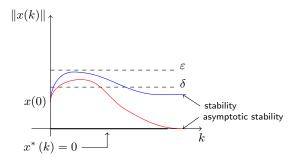
Definition

A specific solution $x^*(k)$ of (5) is called **asymptotically stable** if it is stable and if there is a $\delta > 0$ such that for every other solution x(k) it holds that:

$$\|x(0) - x^*(0)\| \le \delta \Rightarrow \|x(k) - x^*(k)\| \to 0 \quad as \ k \to \infty$$

Example 1

Assume that $x^*(kh) = 0$ is a solution of (5). The figure shows the typical behaviour of other solutions in case $x^*(kh)$ is stable or asymptotically stable.



The linear case

Consider a linear difference equation

$$x\left(kh+h\right) = A \cdot x\left(kh\right) \tag{6}$$

where A known matrix $\in \mathbb{R}^{n \times n}$

Definition

A linear difference equation of the form (6) is (asymptotically) stable if the constant solution $x^*(k) = 0$ is (asymptotically) stable.

How do we choose matrix A in order to have

- 1. stability?
- 2. asymptotic stability?

The linear case

The answer is given by the following theorem:

Theorem (Stability of linear difference equations)

Let $\rho(A) = \max\{|\lambda|, \lambda \text{ is an eigenvalue of } A\}.$ (i) $x(kh+h) = A \cdot x(kh)$ is stable if and only $\rho(A) \leq 1.$ (ii) $x(kh+h) = A \cdot x(kh)$ is asymptotically stable if and only $\rho(A) < 1.$

The linear case: intuition

1. $||x(0) - 0|| \le \delta \Rightarrow ||x(kh)|| \le \varepsilon$? $||x(kh)|| = ||A \cdot x((k-1)h)|| = \ldots = ||A^k \cdot x(0)|| \le ||A^k|| \cdot ||x(0)|| \le ||A||^k \cdot \delta$ To achieve stability, choose matrix A that does not grow with kThis is when the maximum absolute eigenvalue of A, $\rho(A) \le 1$

$$\begin{split} &2. \quad \lim_{k\to\infty}\|x\left(kh\right)\| \leq \lim_{k\to\infty}\|A\|^k\cdot\delta\to 0\\ &\text{ In this case, } \rho\left(A\right) < 1 \end{split}$$

- In scalar case, A is constant and $\rho(A) = A$
- If the eigenvalues are larger than $1 \ \Rightarrow$ instability

Summary

- We have seen the basic aspects of control systems
 - Mathematical description of the state evolution
 - Discretization
 - Stability

Next lecture

• WSNCS, robustness to packet delays and losses