IE1204 Digital Design

F12: Asynchronous Sequential Circuits (Part 1)

KTH Informations- och kommunikationsteknik

Elena Dubrova
KTH / ICT / ES
dubrova@kth.se

This lecture

- BV pp. 584-640

Asynchronous Sequential Machines

- An asynchronous sequential machine is a sequential machine without flip-flops
- Asynchronous sequential machines are constructed by analyzing combinational logic circuits with feedback
- Assumption: Only one signal in a circuit can change its value at any time

Asynchronous state machines

- Asynchronous state machines are used when it is necessary to keep the information about a state, but no clock is available
- All flip-flops and latches are asynchronous state machines
- Useful to synchronize events in situations where metastability is/can be a problem

Asynchronous sequential circuit: SR-latch with NOR gates

- To analyze the behavior of an asynchronous circuit, we use ideal gates and summarize their delays to a single block with delay Δ

Ideal gates
(Delay =0)

Analysis of a sequential asynchronous circuit

- By using a delay block, we can treat
- y as the current state
- Y as the next state

State table

- Thus, we can produce a state table where the next state Y depends on the inputs and the current state y

State table

Present state y	Nextstate			
	$S R=00$	01	10	11
	Y	Y	Y	Y
1	0	0	1	0
1	0	1	0	

$$
Y=\overline{R+\overline{(S+y)}}
$$

Stable states

Present state y	Nextstate			
	$S R=00$	01	10	11
	Y	Y	Y	Y
0	0	0	1	0
1	1	0	1	0

- Since we do not have flip-flops, but only combinational circuits, a state change can cause additional state changes
- A state is
- stable if $\mathrm{Y}(\mathrm{t})=\mathrm{y}(\mathrm{t}+\Delta)$
- unstable if $\mathrm{Y}(\mathrm{t}) \neq \mathrm{y}(\mathrm{t}+\Delta)$

Excitation table

- The state-assigned state table is called excitation table
- Stable states (next state = present state) are circled

Present state y	Next state			
	$S R=00$	01	10	11
0	Y	Y	Y	Y
1	0	0	1	0

Flow table (Moore)

Flow Table (Mealy)

Do not care ('-') has been chosen for output decoder, since output changes directly after the state transition (basic implementation)

Terminology

- When dealing with asynchronous sequential circuits, a different terminology is used
- The state table called flow table
- The state-assigned state table is called excitation table

Analysis of Asynchronous Circuits

- The analysis is done using the following steps:

1) Replace the feedbacks in the circuit with a delay element Δ. The input of the delay element represents the next state Y , while the output y represents the current state.
2) Find out the next-state and output expressions
3) Set up the corresponding excitation tabell
4) Create a flow table and replace the encoded states with symbolic states
5) Draw a state diagram if necessary

Example Master-slave D flip-flop

- Master-slave D flip-flop is designed using two D-latches

$$
\begin{aligned}
& Y_{m}=C D+\bar{C} y_{m} \\
& Y_{s}=\bar{C} y_{m}+C y_{s}
\end{aligned}
$$

Excitation table

- From these equations, we can directly deduce the excitation table

$$
\begin{aligned}
& Y_{m}=C D+\bar{C} y_{m} \\
& Y_{s}=\bar{C} y_{m}+C y_{s}
\end{aligned}
$$

Present state $y_{m} y_{s}$	Nextstate	Output Q
	$C D=00 \begin{array}{llll}01 & 10 & 11\end{array}$	
	$Y_{m} Y_{s}$	
00	(00) (00) 10	0
01	00 00 (01) 11	1
10	$11 \quad 11 \quad 00$	0
11	(11) 11 (11)	1

Flow table

- We define four states S1, S2, S3, S4 and get the following flow table

Present state	Nextstate				Output
	$C D=00$	01	10	11	
S 1	S 1	S 1	S 1	S 3	0
S 2	S 1	S 1	S 2	S 4	1
S 3	S 4	S 4	S 1	S 3	0
S 4	S 4	S 4	S 2	S 4	1

Flow table

Presen state	Nextstate	$\begin{aligned} & \text { Output } \\ & \mathrm{Q} \end{aligned}$
	$C D=000101010$	
S1	(51) (S1) (51) S3	0
S2	S1 S1 S2) S4	1
S3	S4 S4 S1 (53)	0
S4	(54) (54) S2 (54	1

- Remember: Only one input can be changed simultaneously
- Thus, some transitions never occur!

Flow table (Impossible transitions)

- State S3
- The only stable state is S 3 with input combination 11
- Only one input can be changed => possible transitions are (11 => 01,11 => 10)
- These transitions originate in S3!
- The input combination 00 in S 3 is not possible!
- The input combination 00 is set to don't care!

Flow table (Impossible transitions)

Presen state	Nextstate				Output Q
	$C D=00$	01	10	11	
S1	S1		(S1)	S3	
S2		51	(S2)	S4	
S3		S4	S1		
S4		(54)	S2	(54)	

- State S2
- The only stable state is S 2 with input combination 10
- Only one entry can be changed => possible transitions are (10 => $11,10=>00$)
- These transitions originate in S2!
- The input combination 01 in S 2 is not possible!
- The input combination 01 is set to don't care!

State Diagram Master-slave D flip-flop

Synthesis of asynchronous circuits

- The synthesis is carried out using the following steps:

1) Create a state diagram according to the functional description
2) Create a flow table and reduce the number of states if possible
3) Assign codes to the states and create excitations table
4) Determine expressions (transfer functions) for the next state and outputs
5) Construct a circuit that implements the above expressions

Example: Serial Parity Generator Step 1: Create a state diagram

- Input x
- Outputz
- $z=1$ if the number of pulses applied to x is odd
- $z=0$ if the number of pulses applied to x is even

Step 2: Flow chart

Pres state	Next State		z
	$\mathrm{x}=0$	$\mathrm{x}=1$	
A	A	B	0
B	C	B	1
C	C	D	1
D	A	D	0

Step 3: Assign state codes Which encoding is good?

Pres state	Next State		z	
	$\mathrm{y}_{2} \mathrm{y}_{1}$	$\mathrm{Y}_{2} \mathrm{Y}_{1}$		
$\mathrm{x}=1$				
	00	01	0	
01	10	01	1	
10	10	11	1	
11	00	11	0	

Pres state	Next State		z
	$\mathrm{x}=0$		
$\mathrm{y}_{2} \mathrm{y}_{1}$	$\mathrm{Y}_{2} \mathrm{Y}_{1}$		
00	00	01	0
01	11	01	1
11	11	10	1
10	00	10	0

Poor encoding (HD = 2)
If we are in 11 under input $x=1$ and
Good encoding (HD = 1) input change to $x=0$, the circuit should change to 00

State encoding

- In asynchronous sequential circuits, it is impossible to guarantee that the two state variables change value simultaneously
- Thus, a transition $00=>11$ results in
- a transition $00=>01$ => ???
- a transition 00 => 10 => ???
- To ensure correct operation, all state transitions MUST have Hamming distance 1
- The Hamming distance is the number of bits in which two binary numbers differ
- Hamming distance between 00 and 11 is 2
- Hamming distance between 00 and 01 is 1

State encoding

- Procedure to obtain good codes:

1) Draw the transition diagram along the edges of the hypercube defined by the codes
2) Remove any crossing lines by
a) swapping two adjacent nodes
b) exploiting available unused states
c) introducing more dimensions in the hypercube

Example: Serial Parity Generator

Pres state	Next State		z
	$\mathrm{x}=0$		$\mathrm{x}=1$
	$\mathrm{Y}_{2} \mathrm{Y}_{1}$		
00		01	0
01	10	01	1
10	10	11	1
11	00	11	0

$A=00 \quad B=01$
Poor coding Hamming Distance = 2 (Intersecting lines)

Example: Serial Parity Generator

$$
D=10 \quad C=11
$$

Pres state	Next State		z
$\mathrm{y}_{2} \mathrm{y}_{1}$	$\mathrm{x}=0$	$\mathrm{x}=1$	
	$\mathrm{Y}_{2} \mathrm{Y}_{1}$		
00	00	01	0
01	11	01	1
11	11	10	1
10	00	10	0

$$
A=00 \quad B=01
$$

Good coding Hamming Distance = 1 (No intersecting lines)

Exploiting unused states

Flow table from Fig. 9.21a of BV textbook

Present state	Nextstate				Output
	$r_{2} r_{1}=00$	01	10	11	$g_{2} g_{1}$
A	A	B	C	-	00
B	A	B	C	(B)	01
C	A	B	C	C	10

In the transition from B to C (or C to B) has the Hamming distance 2 ! Danger to get stuck in an unspecified state (with code 11)!

Exploiting aunused states

- Solution: Introduce a transition state that ensures that you do not end up in an unspecified state!

Good coding

Additional states (more dimensions)

- One can increase the number of dimensions in order to implement stable state transitions

If it is not possible to redraw a diagram for $\mathrm{HD}=1$, we can add more states by adding extra dimensions. We take the nearest largest hypercube and draw the transitions through the available non steady states.

Step 4:
 Draw Karnaugh maps

Pres state	Next State		z
$\mathrm{y}_{2} \mathrm{y}_{1}$	$\mathrm{x}=0$		
$\mathrm{Y}_{2} \mathrm{Y}_{1}$			
00	00	01	0
01	11	01	1
11	11	10	1
10	00	10	0

They red circles are needed to avoid hazards (see later Section)!

Final circuit

$$
z=y_{1}
$$

What is a Hazard?

- Hazard is a term that means that there is a danger that the output value is not stable, but it can have glitches at certain input combinations
- Hazard occurs when paths from different inputs to the output have different lengths
- To avoid this, we must add implicants to cover the "dangerous" transitions

Examples of hazard: MUX

$Y_{2}=\bar{x} y_{1}+y_{2} y_{1}+x y_{2}$

During the transition from the $\left(\mathrm{Xy}_{2} \mathrm{y}_{1}\right)=(111)$ to (011), the output Q has a glitch, as the path from x to Q is longer through the upper AND gate than through the lower AND gate (racing).

MORE ABOUT hazard in the next lecture!

Step 5: Complete circuit

$$
\mathrm{z}=\mathrm{y}_{1}
$$

State minimization

- Procedure for minimizing the number of states

1. Form equivalence classes.
2. Minimize equivalence classes (state reduction)
3. Form state diagrams either for Mealy or Moore.
4. Merge compatible states in classes. Minimize the number of classes simultaneously. Each state can only belong to one classes.
5. Construct the reduced flow table by merging rows in the selected classes
6. Repeat steps $4-5$ to see if more minimizations can be done

Example Candy Machine (BV page 610)

- Candy machine has two inputs:
- N: nickel (5 cents)
- D: dime (10 cents)
- A candy bar costs 10 cents
- The machine will not return any change if there is 15 cents in the vending machine (a candy bar returned)
- The output z is active if there is enough money for a piece of candy

State Diagram and Flow Chart

| Pres
 state | Next State | | | | z |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | X=00 | 01 | 10 | 11 | |
| A | A | B | C | - | 0 |
| B | D | B | - | - | 0 |
| C | A | - | C | - | 1 |
| D | D | E | F | - | 0 |
| E | A | E | - | - | 1 |
| F | A | - | F | - | 1 |

(X = DN)

A flow table that contains only one stable state per row is called primitive flow table.

Step 1: Form and minimize equivalence classes

1. Forming equivalence classes. To be in the same class, the following should hold for states:

- Outputs must have the same value
- Sucessors must be in the same classes
- Stable states must be at the same positions
- Don't cares for next state must be in the same positions

2. Minimize equivalence classes (state-reduction)

State reduction

Equivalence classes

$$
\begin{aligned}
& p_{1}=(A D)(B)(C F)(E) \\
& p_{2}=(A)(D)(B)(C F)(E) \leftarrow \\
& p_{3}=p_{2} .
\end{aligned}
$$

A and D's sucessors fall into different classes for the input combination 01

Primitive flow table

Pres state	Next State				Q
	X=00	01	10	11	
A	A	B	C	-	0
B	D	B	-	-	0
C	A	-	C	-	1
D	D	E	F	-	0
E	A	E	-	-	1
F	A	-	F	-	1

Resulting flow table

Pres state	Next State			Q	
	X=00	01	10		
A	A	B	C	-	0
B	D	B	-	-	0
C	A	-	C	-	-
1					
D	D	E	C	-	0
E	A	E	-	-	1

Step 2: Merging states

3. Construct state diagram either for Mealy or Moore
4. Merge compatible states in groups. Minimize the number of groups simultaneously. Each state may belong to one group only.
5. Construct the reduced flow table by merging rows in the selected groups
6. Repeat steps $3-5$ to see if more minimizations can be done

Merging states

- Two states are compatible and can be merged if the following applies

1. at least one of the following conditions apply to all input combinations

- both S_{i} and S_{j} have the same successor, or
- both S_{i} and S_{j} are stable, or
- the successor of S_{i} or S_{j}, or both, is unspecified

2. For a Moore machine, in addition the following should hold

- both S_{i} and S_{j} have the same output values whenever specified (not necessary for a Mealy machine)

Merging states

Resulting flow table

Pres state	Next State			Q	
	$X=00$	01	10		
A	A	B	C	-	0
B	D	B	-	-	0
C	A	-	C	-	1
D	D	E	C	-	0
E	A (E	-	-	1	

Compatibility graph

Each row will be a point in a compatibility graph

Mealy-compatible: In state $A(X=00)$ the output is 0 , in state C the output is 1

An illustrative example

Equivalence classes

Primitive flow table

Pres state	Next State	Q
	$\mathrm{X}=000011011$	
A	(A) F C	0
B	A (B) - H	1
C	G - (C)	0
D	- F- D	1
E	G - (E) D	1
F	- (F) - K	0
G	(G) B J	0
H	- L E (H)	1
J	G - J	0
K	- B K	1
L	A ($)^{-}$K	1

$$
\begin{aligned}
& P_{1}=(\mathrm{AG})(\mathrm{BL})(\mathrm{C})(\mathrm{D})(\mathrm{E})(\mathrm{F})(\mathrm{HK})(\mathrm{J}) \\
& \mathrm{P}_{2}=(\mathrm{A})(\mathrm{G})(\mathrm{BL})(\mathrm{C})(\mathrm{D})(\mathrm{E})(\mathrm{F})(\mathrm{HK})(\mathrm{J}) \\
& \mathrm{P}_{3}=\mathrm{P}_{2}
\end{aligned}
$$

Reduced flow table

Pres state	Next State	Q
	X=00 010101011	
A	(A) $F C-$	0
B	A B - H	1
C	$G-\bigcirc D$	0
D	- F- D	1
E	G - E D	1
F	- -H	0
G	(G) $\mathrm{B} \quad \mathrm{J}$	0
H	- B E	1
J	$\mathrm{G}-\mathrm{J}$	0

An illustrative example (cont'd)

Reduced flow table

Pres state	Next State	Q
	X=00 0011011	
A	(A) F C	0
B	A B - H	1
C	G - (C) D	0
D	- F- (D)	1
E	G - (E) D	1
F	- F - H	0
G	(G) B J	0
H	- B E (H)	1
J	G - (J)	0

Pres state	Next State				Q
	X=00	01	10	11	
A	A	A	C	B	0
B	A	B	D	B	1
C	G	-	C	D	0
D	G	A	D	D	1
G	G	B	G	-	0

An illustrative example (cont'd)

Reduced flow table

Pres state	Next State			Q	
	X=00	01	10	11	
A	AA AA	C	B	0	
B	A	B	D	B	1
C	G	-	C	D	0
D	G	A	(D)	(D)	1
G	A	B	(G)	-	0

Final flow table

Pres state	Next State			Q	
	X=00	01	10		
A	A	A	C	B	0
B	A	B	D	B	1
C	CO	B	©	D	0
D	C	A	(D)	(D)	1

Summary

- Asynchronous state machines
- Based on analysis of combinational circuits with feedback
- All flip-flops and latches are asynchronous state machines
- A similar theory as for synchronous state machines can be applied
- Only one input or state variable can be changed at a time!
- We must also take into account the problem with hazards
- Next lecture: BV pp. 640-648, 723-724

