IE1204 Digital Design

F12: Asynchronous Sequential Circuits (Part 1)

Elena Dubrova KTH / ICT / ES dubrova@kth.se

This lecture

• BV pp. 584-640

Asynchronous Sequential Machines

- An asynchronous sequential machine is a sequential machine without flip-flops
- Asynchronous sequential machines are constructed by analyzing combinational logic circuits with feedback
- Assumption: Only one signal in a circuit can change its value at any time

Asynchronous state machines

- Asynchronous state machines are used when it is necessary to keep the information about a state, but no clock is available
 - All flip-flops and latches are asynchronous state machines
 - Useful to synchronize events in situations where metastability is/can be a problem

Asynchronous sequential circuit: SR-latch with NOR gates

 To analyze the behavior of an asynchronous circuit, we use ideal gates and summarize their delays to a single block with delay Δ

Analysis of a sequential asynchronous circuit

- By using a delay block, we can treat
 - y as the current state
 - Y as the next state

State table

 Thus, we can produce a state table where the next state Y depends on the inputs and the current state y

$$Y = \overline{R + \overline{(S + y)}}$$

State table

Present	Ne	extsta	ıte	
state	SR = 00	01	10	11
У	Y	Y	Y	Υ
0	0	0	1	0
1	1	0	1	0

$$Y = \overline{R + \overline{(S + y)}}$$

Stable states

Present	Ne	ext sta	ite	
state	SR = 00	01	10	11
У	Υ	Y	Υ	Υ
0	0	0	1	0
1	1	0	1	0

- Since we do not have flip-flops, but only combinational circuits, a state change can cause additional state changes
- A state is
 - stable if $Y(t) = y(t + \Delta)$
 - unstable if $Y(t) \neq y(t + \Delta)$

Excitation table

- The state-assigned state table is called excitation table
- Stable states (next state = present state) are circled

Present	N	ext sta	ate	
state	SR = 00	01	10	11
У	Υ	Y	Υ	Υ
0	0	0	1	0
1	1	0	1	0

Flow table (Moore)

Present	Ne	Output			
state	SR = 00	01	10	11	Q
Α	A	A	В	\bigcirc A	0
В	B	Α	\bigcirc B	Α	1

Flow Table (Mealy)

Present	Ne	xt sta	te			Outp	ut,Q	
state	SR = 00	01	10	11	00	01	10	11
А	A	A	В	A	0	0	-	0
В	B	Α	\bigcirc B	Α	1	-	1	-

Do not care ('-') has been chosen for output decoder, since output changes directly after the state transition (basic implementation)

Terminology

- When dealing with asynchronous sequential circuits, a different terminology is used
 - The state table called flow table
 - The state-assigned state table is called excitation table

Analysis of Asynchronous Circuits

- The analysis is done using the following steps:
 - Replace the feedbacks in the circuit with a delay element Δ. The input of the delay element represents the next state Y, while the output y represents the current state.
 - 2) Find out the next-state and output expressions
 - 3) Set up the corresponding excitation tabell
 - 4) Create a flow table and replace the encoded states with symbolic states
 - 5) Draw a state diagram if necessary

Example Master-slave D flip-flop

 Master-slave D flip-flop is designed using two D-latches

The equations for the next state:

$$Y_{m} = CD + \overline{C}y_{m}$$
$$Y = \overline{C}y + Cy$$

Excitation table

 From these equations, we can directly deduce the excitation table

$$Y_{m} = CD + \overline{C}y_{m}$$
$$Y_{s} = \overline{C}y_{m} + Cy_{s}$$

Present	Ne	Nextstate			
state	CD = 00	01	10	11	Output
<i>Ym Y</i> s		Ym Ys	S	_	Q
00	00	00	000	10	0
01	00	00	01)	11	1
10	11	11	00	10	0
11	11)	11	01	11	1

Flow table

 We define four states S1, S2, S3, S4 and get the following flow table

Present	Ne	extsta	ite		Output
state	CD = 00	01	10	11	Q Q
S1	<u>(S1)</u>	<u>S1</u>	<u>(S1)</u>	S3	0
S2	S1	S1	S2	S4	1
S3	S4	S4	S1	(33)	0
S4	S4	S4	S2	S4	1

Flow table

Present	Ne	extsta	ite		Output
state	CD = 00	01	10	11	Q
S1	<u>(S1)</u>	<u>S1</u>	<u>(S1)</u>	S3	0
S2	S1	S1	<u>S2</u>	S4	1
S3	S4	S4	S1	(S3)	0
S4	S4	<u>S4</u>	S2	<u>S4</u>	1

- Remember: Only one input can be changed simultaneously
- Thus, some transitions never occur!

Flow table (Impossible transitions)

Present	Ne	extsta	ite		Output
state	CD = 00	01	10	11	Q
S1	<u>S1</u>	S1	S1	S3	0
S2	S1	S1	<u>S2</u>	S4	1
S3	-\$4	S4	S1	S3	0
S4	S4	<u>S4</u>	S2	<u>\$4</u>	1

State S3

- The only stable state is S3 with input combination 11
- Only one input can be changed => possible transitions are (11 => 01, 11 => 10)
 - These transitions originate in S3!
 - The input combination 00 in S3 is not possible!
 - The input combination 00 is set to don't care!

Flow table (Impossible transitions)

Present	Ne	xtsta	te		Output
state	CD = 00	01	10	11	Q
S1	S1	<u>S1</u>	S1	S3	0
S2	S1	\$1	<u>S2</u>	S4	1
S3	-	S4	S1	S3	0
S4	S4	S4	S2	<u>S4</u>	1

State S2

- The only stable state is S2 with input combination 10
- Only one entry can be changed => possible transitions are (10 => 11, 10 => 00)
 - These transitions originate in S2!
 - The input combination 01 in S2 is not possible!
 - The input combination 01 is set to don't care!

State Diagram Master-slave D flip-flop

Synthesis of asynchronous circuits

- The synthesis is carried out using the following steps:
 - Create a state diagram according to the functional description
 - Create a flow table and reduce the number of states if possible
 - 3) Assign codes to the states and create excitations table
 - 4) Determine expressions (transfer functions) for the next state and outputs
 - 5) Construct a circuit that implements the above expressions

Example: Serial Parity Generator Step 1: Create a state diagram

- Input x
- Output z
- z = 1 if the number of pulses applied to x is odd
- z = 0 if the number of pulses applied to x is even

Step 2: Flow chart

Pres state	Next State		Z
	x=0	x=1	
А	(A)	В	0
В	C	B	1
С	C	D	1
D	Α	(D)	0

Step 3: Assign state codes Which encoding is good?

Pres state	Next State		Z
	x=0	x=1	
y ₂ y ₁	Y ₂ `	Y ₁	
00	(00)	01	0
01	10	01	1
10	10	11	1
11	00	(11)	0

Poor encoding (HD = 2) If we are in 11 under input x = 1 and input change to x = 0, the circuit should change to 00

Pres state	Next S	Z	
	x=0		
y 2 y 1	Y ₂ `		
00	(00)	01	0
01	11	01	1
11	11	10	1
10	00	(10)	0

Good encoding (HD = 1)

State encoding

- In asynchronous sequential circuits, it is impossible to guarantee that the two state variables change value simultaneously
 - Thus, a transition 00 => 11 results in
 - a transition 00 => 01 => ???
 - a transition 00 => 10 => ???
- To ensure correct operation, all state transitions
 MUST have Hamming distance 1
 - The Hamming distance is the number of bits in which two binary numbers differ
 - Hamming distance between 00 and 11 is 2
 - Hamming distance between 00 and 01 is 1

State encoding

- Procedure to obtain good codes:
 - Draw the transition diagram along the edges of the hypercube defined by the codes
 - 2) Remove any crossing lines by
 - a) swapping two adjacent nodes
 - b) exploiting available unused states
 - c) introducing more dimensions in the hypercube

Example: Serial Parity Generator

Pres state	Next S	Z	
	x=0		
y 2 y 1	Y ₂ \		
00	(00)	01	0
01	10	(01)	1
10	(10)	11	1
11	00	(11)	0

Poor coding -Hamming Distance = 2 (Intersecting lines)

Example: Serial Parity Generator

Pres state	Next S	Z	
	x=0		
y 2 y 1	Y ₂ \		
00	(00)	01	0
01	11	01)	1
11	11)	10	1
10	00	10	0

Good coding
Hamming Distance = 1
(No intersecting lines)

Exploiting unused states

Flow table from Fig. 9.21a of BV textbook

Present	Nextstate				Output
state	$r_2r_1=00$	01	10	11	9 ₂ 9 ₁
Α	A	В	С		00
В	А	\bigcirc B	С	B	01
С	А	В	<u>C</u>	<u>C</u>	10

Poor coding

In the transition from B to C (or C to B) has the Hamming distance 2! Danger to get stuck in an unspecified state (with code 11)!

Exploiting aunused states

 Solution: Introduce a transition state that ensures that you do not end up in an unspecified state!

Good coding

	Present	Nextstate				
	state	$r_2r_1=00$	01	11	10	Output
	y 2 y 1		Y ₂ Y ₁			$g_{2}g_{1}$
Α	00	00	01	-	10	00
В	01	00	Q1	<u>(01)</u>	11	01
D	11	-	01	-	10	dd
С	10	00	11	10	10	10

Additional states (more dimensions)

 One can increase the number of dimensions in order to implement stable state transitions

If it is not possible to redraw a diagram for HD = 1, we can add more states by adding extra dimensions. We take the nearest largest hypercube and draw the transitions through the available non steady states.

Step 4: **Draw Karnaugh maps**

Pres state	Next S	Z	
	x=0		
y 2 y 1	Y ₂ `		
00	(00)	01	0
01	11	01)	1
11	(11)	10	1
10	00	10	0

$$Y_2 = \overline{xy_1} + y_2y_1 + xy_2$$
 $Y_1 = x\overline{y_2} + \overline{y_2}y_1 + \overline{x}y_1$

$$Y_1 = x\overline{y_2} + \overline{y_2}y_1 + \overline{x}y_1$$

$$y_{1}$$
 y_{2}
 y_{2}
 y_{3}
 y_{4}
 y_{5}
 y_{1}
 y_{2}
 y_{3}
 y_{4}
 y_{5}
 y_{6}
 y_{7}
 y_{1}
 y_{1}
 y_{2}
 y_{3}
 y_{4}
 y_{5}
 y_{5}
 y_{6}
 y_{7}
 y_{7

$$z = y_1$$

They red circles are needed to avoid hazards (see later Section)!

Final circuit

 $z = y_1$

What is a Hazard?

- Hazard is a term that means that there is a danger that the output value is not stable, but it can have glitches at certain input combinations
- Hazard occurs when paths from different inputs to the output have different lengths
- To avoid this, we must add implicants to cover the "dangerous" transitions

Examples of hazard: MUX

During the transition from the $(xy_2y_1) = (111)$ to (011), the output Q has a glitch, as the path from x to Q is longer through the upper AND gate than through the lower AND gate (racing).

MORE ABOUT hazard in the next lecture!

Step 5: Complete circuit

$$z = y_1$$

State minimization

- Procedure for minimizing the number of states
 - 1. Form equivalence classes.
 - 2. Minimize equivalence classes (state reduction)
 - 3. Form state diagrams either for Mealy or Moore.
 - Merge compatible states in classes. Minimize the number of classes simultaneously. Each state can only belong to one classes.
 - 5. Construct the reduced flow table by merging rows in the selected classes
 - 6. Repeat steps 4-5 to see if more minimizations can be done

Example Candy Machine (BV page 610)

- Candy machine has two inputs:
 - N: nickel (5 cents)
 - D: dime (10 cents)
- A candy bar costs 10 cents
- The machine will not return any change if there is 15 cents in the vending machine (a candy bar returned)
- The output z is active if there is enough money for a piece of candy

State Diagram and Flow Chart

Pres	Next State		Z
state	X=00 01 10	11	
Α	(A) B C	-	0
В	D B -	-	0
С	A - (C)	-	1
D	D E F	-	0
E	A (E) -	-	1
F	A - (F)	-	1

$$(X = DN)$$

A flow table that contains only one stable state per row is called *primitive* flow table.

Step 1: Form and minimize equivalence classes

- 1. Forming equivalence classes. To be in the same class, the following should hold for states:
 - Outputs must have the same value
 - Successors must be in the same classes
 - Stable states must be at the same positions
 - Don't cares for next state must be in the same positions
- 2. Minimize equivalence classes (state-reduction)

State reduction

Equivalence classes

$$p_1$$
= (AD) (B) (CF) (E)
 p_2 = (A) (D) (B) (CF) (E) \leftarrow
 p_3 = p_2 .

A and D's sucessors fall into different classes for the input combination 01

Primitive flow table

Pres	Next State		Q
state	X=00 01 10	11	
A	(A) B C		0
/\			O
В	D (B) -	-	0
С	A - C	-	1
D	D E F	-	0
E	A E -	-	1
F	A - (F)	-	1

Resulting flow table

Pres	Next State	Q
state	X=00 01 10 1	1
		_
A	(A) B C	- 0
В	D (B) -	- 0
С	A - C	- 1
D	D E C	- 0
E	A (E) -	- 1

Step 2: Merging states

- 3. Construct state diagram either for Mealy or Moore
- 4. Merge compatible states in groups. Minimize the number of groups simultaneously. Each state may belong to one group only.
- Construct the reduced flow table by merging rows in the selected groups
- Repeat steps 3-5 to see if more minimizations can be done

Merging states

- Two states are compatible and can be merged if the following applies
 - 1. at least one of the following conditions apply to all input combinations
 - both S_i and S_i have the same successor, or
 - both S_i and S_i are stable, or
 - the successor of S_i or S_i, or both, is unspecified
 - 2. For a Moore machine, in addition the following should hold
 - both S_i and S_j have the same output values whenever specified (not necessary for a Mealy machine)

Merging states

Resulting flow table

Pres	Next State	Q
state	X=00 01 10 1	1
Α	(A) B C -	0
В	D (B)	0
С	A - (C) -	1
D	DEC -	0
E	A (E)	1

Each row will be a point in a compatibility graph

Compatibility graph

Mealy-compatible: In state A (X = 00) the output is 0, in state C the output is 1

An illustrative example

Primitive flow table

Pres	Next State	Q
state	X=00 01 10 11	
Α	(A) F C -	0
В	A (B) - H	1
С	G - (C) -	0
D	- F - D	1
E	G - E D	1
F	- (F) - к	0
G	G в J -	0
Н	- L E (H)	1
J	G - (J) -	0
K	- B E (K)	1
L	A (L) - K	1

Equivalence classes

$$P_1$$
= (AG) (BL) (C) (D) (E) (F) (HK) (J)
 P_2 = (A) (G) (BL) (C) (D) (E) (F) (HK) (J)
 P_3 = P_2

Reduced flow table

Pres	Next State)	Ю
state	X=00 01 10	11	
	0 - 0		
Α	A) F C	-	0
В	А (B) -	Н	1
С	G - ()	D	0
D	- F -	D	1
E	G - 🖹	D	1
F	- (-) -	Н	0
G	G B J	-	0
Н	- B E	(H)	1
J	G - (J)	-	0

An illustrative example (cont'd)

Reduced flow table

Pres	Next State		Q
state	X=00 01 10	11	
А	A F C	-	0
В	A (B) -	Н	1
С	G - (C)	D	0
D	- F - (1
Е	G - (E)	D	1
F	- (F) -	Н	0
G	G B J	-	0
Н	- B E (H	1
J	G - (J	-	0

Pres	Ne	Next State			Q
state	X=00	01	10	11	
А	Α	Α	С	В	0
В	Α	В	D	В	1
С	G	-	С	D	0
D	G	Α	D	D	1
G	G	В	G	-	0

An illustrative example (cont'd)

Reduced flow table

Pres	Next State	Q
state	X=00 01 10 11	
А	AACB	0
В	A B D B	1
С	G - © D	0
D	G A D D	1
G	G в G -	0

Final flow table

Pres	Next State	Q
state	X=00 01 10 11	
А	AACB	0
В	A B D B	1
С	© B © D	0
D	C A (D) (D)	1

Summary

- Asynchronous state machines
 - Based on analysis of combinational circuits with feedback
 - All flip-flops and latches are asynchronous state machines
- A similar theory as for synchronous state machines can be applied
 - Only one input or state variable can be changed at a time!
 - We must also take into account the problem with hazards
- Next lecture: BV pp. 640-648, 723-724