#### Principles of Wireless Sensor Networks

https://www.kth.se/social/course/EL2745/

#### Lecture 13 Wireless Sensor Network Control Systems 2

#### Piergiuseppe Di Marco

Ericsson Research e-mail:pidm@kth.se http://pidm.droppages.com/



Royal Institute of Technology Stockholm, Sweden

#### October 8, 2015

#### Course content

- Part 1
  - ► Lec 1: Introduction to WSNs
  - Lec 2: Introduction to Programming WSNs
- Part 2
  - ► Lec 3: Wireless Channel
  - Lec 4: Physical Layer
  - Lec 5: Medium Access Control Layer
  - ► Lec 6: Routing
- Part 3
  - ► Lec 7: Distributed Detection
  - Lec 8: Static Distributed Estimation
  - Lec 9: Dynamic Distributed Estimation
  - ► Lec 10: Positioning and Localization
  - ► Lec 11: Time Synchronization
- Part 4
  - ► Lec 12: Wireless Sensor Network Control Systems 1
  - Lec 13: Wireless Sensor Network Control Systems 2

#### Previous lecture





How to model mathematically a closed loop control system?

# Today's learning goals



- How stability is affected by delays introduced by the WSN?
- How stability is affected by packet losses introduced by the WSNs?
- How to design WSNCS?

#### Outline

- Overview: WSNCS
- WSNCS with constant network delay
- WSNCS with random network delay
- WSNCS with asynchronous events
- WSNCS with packet losses
- Design of WSNCS

### Outline

#### • Overview: WSNCS

- WSNCS with constant network delay
- WSNCS with random network delay
- WSNCS with asynchronous events
- WSNCS with packet losses
- Design of WSNCS

#### **Overview: WSNCS**



## Outline

- Overview: WSNCS
- WSNCS with constant network delay
- WSNCS with random network delay
- WSNCS with asynchronous events
- WSNCS with packet losses
- Design of WSNCS

## WSNCS with constant network delay

Consider a linear model

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t)$$
(1)

Assume that the controller takes a decision proportional to the state

$$u\left(t\right) = -Lx\left(t\right)$$

- L is chosen accordingly in order to achieve stability
- In general  $u(t) = -L\hat{x}(t)$  where  $\hat{x}(t)$  is an estimate of x(t) based on y(t)
- Assume x(t) is estimated perfectly

## WSNCS with constant network delay

Let  $\tau_k$  be the delay introduced by the network



Assume  $0 \le \tau_k \le h$  where h the sampling time

When is the closed loop control system stable despite  $\tau_k$  and given u(kh) = -Lx(kh)?

#### Network Delays

Our model becomes:

$$\dot{x}(t) = Ax(t) + Bu(t - \tau_k), \quad t \in [kh, kh + h)$$

$$y(t) = Cx(t) + Du(t)$$
(2)

where u(t) is the input signal in the absence of delay, i.e. u(t)=u(kh) for  $t\in [kh,kh+h).$ 

In the presence of delay  $\tau_k$ , the control command u(hk - h) is used until time  $t = hk + \tau_k$ .

#### WSNCS with constant network delay



From lecture 12, the solution of (1) is

$$x (kh + h) = e^{Ah} x (kh) + \int_{kh}^{kh+h} e^{A(hk+h-\tau)} Bu(\tau) d\tau =$$
  
=  $e^{Ah} x (kh) + \int_{kh}^{kh+\tau_k} e^{A(hk+h-\tau)} Bu((k-1)h) d\tau + \int_{kh+\tau_k}^{kh+h} e^{A(hk+h-\tau)} Bu(kh) d\tau =$ 

by changing variable  $s = kh + h - \tau$ , we obtain

$$x(kh+h) = \phi x(kh) + \Gamma_0(\tau_k)u(kh) + \Gamma_1(\tau_k)u(kh-h)$$
(3)

$$\phi = e^{Ah} \qquad \Gamma_0\left(\tau_k\right) = \int_{0}^{h-\tau_k} e^{As} B ds \qquad \Gamma_1\left(\tau_k\right) = \int_{h-\tau_k}^{h} e^{As} B ds$$

#### Network Delays

Consider the linear control input  $u(x(kh))=-Lx(kh),\quad L\in\mathbb{R}^{n\times n}$  Then, we can write

$$x(kh+h) = \phi x(kh) - \Gamma_0(\tau_k) L x(kh) - \Gamma_1(\tau_k) L x((k-1)h)$$
(4)

By defining the augmented state vector  $z = \begin{bmatrix} x(kh) \\ u(kh-h) \end{bmatrix}$  and the matrix  $\overline{\phi}(\tau_k) = \begin{bmatrix} \phi - \Gamma_0(\tau_k)L & \Gamma_1(\tau_k) \\ -L & 0 \end{bmatrix}$ .

We obtain the equivalent form

$$z(kh+h) = \overline{\phi}(\tau_k)z(kh) \tag{5}$$

If the maximum eigenvalue of  $\overline{\phi}$ ,  $\rho(\overline{\phi}) < 1$ , then the closed loop system is asymptotically stable.

#### Example

Suppose that we are given a simple scalar system that is subject to a constant network delay  $\tau$  and governed by the following equation:

$$\dot{x}\left(t\right) = u\left(t\right)$$

Assume that the controller decision is u(t) = -Lx(t).

In order to study the stability of the delay system, the matrix  $\overline{\phi}$  needs to be constructed. Thus, since A = 0 and B = 1,

$$\phi = e^0 = 1$$
  $\Gamma_0 = \int_0^{h- au} ds = h - au$   $\Gamma_1 = \int_{h- au}^h ds = au$ 

and the matrix becomes

$$\overline{\phi} = \begin{bmatrix} \phi - \Gamma_0(\tau) L & \Gamma_1(\tau) \\ -L & 0 \end{bmatrix} = \begin{bmatrix} 1 - hL + \tau & \tau \\ -L & 0 \end{bmatrix}$$

#### Example

To compute the eigenvalues of  $\overline{\phi}$ , we need to solve the equation:

$$\det\left(\overline{\phi} - \lambda I\right) = 0 \Leftrightarrow (1 - hL + \tau L - \lambda)(-\lambda) + \tau L = 0 \Leftrightarrow$$
$$\Leftrightarrow \lambda^{2} - \lambda (1 - hL + \tau L) + \tau L = 0 \Leftrightarrow$$
$$\Leftrightarrow \lambda_{1,2} = \frac{1 - hL + \tau L \pm \sqrt{(1 - hL + \tau L)^{2} - 4\tau L}}{2}$$

The sampled system state is asymptotically stable iff  $|\lambda_1|, |\lambda_2| < 1$ .

## Outline

- Overview: WSNCS
- WSNCS with constant network delay
- WSNCS with random network delay
- WSNCS with asynchronous events
- WSNCS with packet losses
- Design of WSNCS



- $\bullet$  We now assume that the delay is not constant, but a random variable of maximum value  $\tau_{\rm max}$
- $\bullet\,$  Using  $\tau_{\rm max}$  as in the previous case, would give conservative results
- We could exploit the randomness to get better results

When is the system stable despite random delay?

Assume for simplicity h = 1

 $x (k + 1) = \phi x (k) + \Gamma u (k)$ y (k) = Cx (k) + Du (k)

We rewrite the system of equations in terms of *z*-transform,

$$zX(z) - X(0) = \phi X(z) + \Gamma U(z)$$

 $Y\left(z\right) = CX\left(z\right) + DU\left(z\right)$ 

where  $X\left(z\right)=\sum_{k=0}^{\infty}x(k)z^{-k}$ ,  $U\left(z\right)=\sum_{k=0}^{\infty}u(k)z^{-k}$  and  $Y\left(z\right)=\sum_{k=0}^{\infty}y(k)z^{-k}$ 

Note: the *z*-transform converts discrete-time signals into a frequency domain representation (similarly to Laplace transformation for continuous-time signals).

Combining the equations and solving for Y,

$$Y(z) = C(zI - \phi)^{-1} zX(0) + [C(zI - \phi)^{-1}\Gamma + D] U(z)$$
  
=  $C(zI - \phi)^{-1} zX(0) + H(z)U(z)$ 

where H(z) is defined as the **pulse transfer function** of the system

$$H(z) \stackrel{\Delta}{=} \left[ C(zI - \phi)^{-1} \Gamma + D \right]$$



The control law is given as

$$u(k) = \sum_{n=0}^{k} f(n) y(k-n) \xrightarrow{Z\{\}} U(z) = F(z) \cdot Y(z)$$

F(z) can be properly designed in order to affect the controller's decision

#### Theorem

Consider the WSNCS with a random uniform distributed delay with  $\tau_{\max} \leq h$  and  $U(z) = F(z) \cdot Y(z)$ . The closed loop system is stable if

$$\left|\frac{F\left(z\right)H\left(z\right)}{1+F\left(z\right)H\left(z\right)}\right| \le \frac{1}{\tau_{\max}\cdot|z-1|} \quad \forall \omega$$

where  $z = e^{i\omega}$ 

- Sufficient but not necessary condition for stability
- F(z) and/or  $\tau_{\max}$  can be tuned to achieve closed loop stability.

## Outline

- Overview: WSNCS
- WSNCS with constant network delay
- WSNCS with random network delay
- WSNCS with asynchronous events
- WSNCS with packet losses
- Design of WSNCS

## WSNCS with asynchronous events

Consider a WSNCS where the same state, x(k), is observed at different time instants with different measurement functions



The system is described by the set of difference equations

$$x(k+1) = f_i(x(k))$$
  $i = 1, ..., N$ 

where  $1, \ldots, N$  the set of discrete states with the respective associated rates  $r_1, r_2, \ldots, r_N$ . These rates are the fraction of time that each discrete state occurs, that is

$$r_i = \frac{1}{t_i} \quad i = 1, \dots, N$$

## WSNCS with asynchronous events

The stability condition of such model is given by the following theorem

#### Theorem

Given a WSNCS as defined above, if there exists a function  $V(x) : \mathbb{R}^n \to \mathbb{R}_+$  such that

$$V(x)|_{x=0} = 0, \quad V(x)|_{x\neq 0} > 0, \quad V(x) < 0,$$

and scalars  $\alpha_1, \alpha_2, ..., \alpha_N$  corresponding to each rate such that

$$\alpha_1^{r_1} \cdot \alpha_2^{r_2} \cdot \dots \cdot \alpha_N^{r_n} > \alpha > 1$$

and

$$V(x(k+1)) - V(x(k)) \le ({\alpha_i}^{-2} - 1)V(x(k)) \quad i = 1, \dots, N$$

then the WSNCS is asymptotically stable.

Note, V(x) is called Lyapunov function of x.  $\alpha$  defines the decay rate of x.

### Outline

- Overview: WSNCS
- WSNCS with constant network delay
- WSNCS with random network delay
- WSNCS with asynchronous events
- WSNCS with packet losses
- Design of WSNCS

#### Packet losses



The input u(t) will depend on whether a packet drop has occurred or not and is given by:  $u(t) = -L\overline{x}(kh)$  for  $t \in [kh, kh + h)$ , where

$$\overline{x}(kh) = egin{cases} x(kh-h) & ext{th packet was lost} \ x(kh) & ext{otherwise} \end{cases}$$

The probability of a packet loss is associated to the **packet loss probability** p

## WSNCS with packet losses

The characteristic equations of the closed loop system are

 $x((k+1)h) = \phi x(kh) + \Gamma u(kh)$  $u(kh) = -L\bar{x}(kh)$ 

where recall that

 $\bar{x}(kh) = \begin{cases} x(kh) & \text{if no packet losses} \\ \bar{x}((k-1)h) & \text{otherwise} \end{cases}$ 

When is the system stable?

## WSNCS with packet losses

#### Theorem

Suppose that the closed loop system is stable in the case of no packet losses. Then

- 1. If the open loop system is stable (i.e.,  $\rho(\phi)$  is stable) then the closed loop system (with packet losses) is stable for every p
- 2. If  $\phi$  is unstable, then the closed loop system (with packet losses) is stable when

$$\frac{1}{1-\frac{\gamma_1}{\gamma_2}} < 1-p$$

where  $\gamma_1 = \log \lambda_{\max}^2 (\phi - \Gamma L)$ ,  $\gamma_2 = \log \lambda_{\max}^2 (\phi)$  and  $\lambda_{\max}$  the maximum eigenvalue of the corresponding matrix

We have the following parameters:

- The packet loss probability p, that depends on PHY, MAC, routing
- The controller *L*

## Outline

- Overview: WSNCS
- WSNCS with constant network delay
- WSNCS with random network delay
- WSNCS with asynchronous events
- WSNCS with packet losses
- Design of WSNCS

# WSNs design



The role of mathematical modeling and optimization is central

## WSNCS design

$$\min_{x} J(x)$$
s.t.  $\Pr(\mathsf{succ}) \ge 1 - p$ 
 $\Pr(\mathsf{delay} \le \tau_{\max}) \ge \delta$ 

The cost function J(x) represent the WSNCS cost, e.g., energy consumption E(x). The optimization variable x collects both communication and control parameters.

### Wireless Sensor Networks



## Summary

- We saw that there is no need to design WSNs that minimize the delay and maximize the packet reception probability
- The controllers can tolerate a certain degree of delay and packet losses
- The efficient design of a wireless sensor network control system can be posed by optimization problems

#### Exam, October 28, 08:00-13:00, M33

- 5 exercises chosen on every part of the course, inspired from the exercises of compendium and homework
- 5 hours to complete the exam
- Allowed to bring PRINTED lecture slides and draft book, and basic books on math, e.g., Mathematics Handbook by Rade & Westergren
- Not allowed to bring exercise lecture notes
- Not allowed to bring compendium with exercises and solutions
- Results available after 2-3 weeks

#### Master thesis projects

- Theoretical, practical, or business oriented
- Conduct forefront research
- Possible collaboration with industry (e.g., Ericsson Research)
- Interaction with Professors, Research Associates, and PhD students
- You can propose the topic, or ask for a project on
  - Distributed optimization over WSNs
  - Distributed detection and estimation
  - Design of wireless sensor networked control systems
  - Future wireless networks
  - Internet of Things
  - MAC, Routing
  - Smart grids
  - Privacy
  - ▶ ...

# PhD in Electrical Engineering

- For motivated and talented students, possibility of continuing towards a PhD
- International collaborations UC Berkeley, Stanford University, MIT, Caltech,...
- Conferences, workshops, summer schools around the world
- Competitive salary
- World-wide job market (academia or companies)
- Access to senior positions in research-oriented industries
- Research (50%), courses (30%), teaching (20%), fun (100%)
- 4-5 years to earn the PhD