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Abstract—A source model of key sharing between three users
is considered in which each pair of them wishes to agree on
a secret key hidden from the remaining user. There are rate-
limited public channels for communications between the users.
We give an inner bound on the secret key capacity region in
this framework. Moreover, we investigate a practical setup in
which localization information of the users as the correlated
observations are exploited to share pairwise keys between the
users. The inner and outer bounds of the key capacity region are
analyzed in this setup for the case of i.i.d. Gaussian observations.

I. INTRODUCTION

Secret key sharing at the physical layer is a promising ap-
proach for deriving shared secret keys. Ahlswede and Csiszar
[1] and Maurer [2] introduced source and channel models of
key sharing between two legitimate users in the presence of an
eavesdropper using source and channel common randomness
along with an unlimited public channel. Various extensions
considered a limited public channel [3], sharing of one secret
key in a network of users [4], and more than one secret key
in different scenarios [5]– [11].

Pairwise key sharing first introduced in [11], is a specific
problem in this area, requiring that each pair of users shares
a secret key concealed from the remaining user(s). In a basic
setup including three users with access to correlated source
observations and communication over an unlimited public
channel, inner and outer bounds on the secret key capacity
region were derived. In this paper, we extend the pairwise key
sharing framework in [11] to the rate-limited public channel
for communications. The public channel is full duplex and
each of the users can simultaneously send/receive information
over/from the public channel. Based on the correlated observa-
tions, users communicate over the rate-limited public channel.
Then, each user generates the respective keys as functions of
its source observations and the information received over the
rate-limited public channel. We derive an inner bound on the
key capacity region in this framework; the explicit outer bound
given in [11] holds here for the rate-limited public channel
case.

We consider location-derived common randomness here
because it is a promising, towards practical applications,
approach. This is so because a multitude of emerging wireless
systems are location-aware and devices can and need to per-
form distance measurements over RF communication, notably
for security reasons, for example [12], [13].
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Fig. 1: Pairwise secret key sharing in the source model

Location-derived common randomness was considered in
[14] in a different setup, with a key established between a
mobile node and a wireless infrastructure. In a setup closer to
the one considered here, [15] considered two users that move
according to a discrete time stochastic mobility model and
measure their respective distance, after exchanging messages,
in the presence of an eavesdropper. In this paper, leveraging the
latter approach, we generalize location-derived key sharing to
the “pairwise secret key”setting, notably with three users. We
present inner bounds of the pairwise key capacity region for
both unlimited and limited public channels. Furthermore, the
explicit outer bound in [11] is analyzed in this i.i.d. Gaussian
setup. Some numerical results are given for the Gaussian setup
as well.

The proposed scheme can be extended to the case of more
than three users as the future work in which collusion of
curious users needs to be investigated. Here we consider
simply users curious about the keys their peers derive. But they
do not otherwise deviate from the specification and disrupt the
protocol.

The rest of the paper is organized as follows: in Section II,
the preliminaries of the key sharing setup are given. An inner
bound of the pairwise key capacity region with rate-limited
public channel is given in Sections III. Deriving pairwise
keys from localization information along with the respective
inner and outer bounds are presented in Section IV. Numerical
results and concluding remarks are given in Sections V and VI,
respectively. Proofs of the results are presented in Appendices.

II. PRELIMINARIES

Users 1, 2 and 3, respectively, have access to n i.i.d. obser-
vations X1, X2 and X3 according to Fig. 1. The observations
are correlated according to distribution PX1X2X3 . The random



variable Xi takes values from the finite set Xi for i = 1, 2, 3.
Furthermore, there exists a noiseless public channel of limited
capacity for communication between the three users where
user i is subject to rate constraint Ri for its transmission. Each
pair of the three users intends to share a secret key concealed
from the remaining user. Ki,j denotes the shared key between
users i and j, hidden from user m, for i, j,m ∈ {1, 2, 3},
i < j, m 6= i, j. We represent the formal definition of the
described secret key sharing setup.

User i sends stochastic function Fi = fi(X
n
i ) over the rate-

limited public channel for i = 1, 2, 3 subject to

1

n
H(Fi) ≤ Ri (1)

Upon receiving the information over the public channel, key
generation is performed at the users. Key generation function
gi is used by user i for i = 1, 2, 3 as:

g1 : F2 ×F3 ×Xn1 → K1,2 ×K1,3 (2)
g2 : F1 ×F3 ×Xn2 → K1,2 ×K2,3 (3)
g3 : F1 ×F2 ×Xn3 → K1,3 ×K2,3. (4)

Thus, user 1 calculates K1,2 and K1,3 to share with users 2
and 3, respectively. Similarly, user 2 calculates K̂1,2 and K2,3

to share with users 1 and 3 and user 3 calculates K̂1,3 and
K̂2,3 to share with users 1 and 2.

Definition 1: In the pairwise secret key sharing over public
channels of limited rates (R1, R2, R3) at the respective users
1, 2, 3, the rate triple (R12, R13, R23) is an achievable key
rate pair if for every ε > 0 and sufficiently large n, we have:

∀i < j ∈ {1, 2, 3} 1

n
H(Ki,j) =≥ Rij − ε (5)

∀i < j ∈ {1, 2, 3} Pr{Ki,j 6= K̂i,j} < ε (6)
∀i<j,m∈{1, 2, 3},m /∈{i, j} I(Ki,j ;Fi, Fj , X

n
m) < ε (7)

∀i∈{1, 2, 3} 1

n
H(Fi) ≤ Ri. (8)

Equation (5) means that rate Rij is the rate of the secret key
between users i and j. Equation (6) means that each user can
correctly estimate the respective keys. Equation (7) means that
each user effectively has no information about the remaining
users’ secret key. Equation (8) denotes that the key sharing is
subject to the constraint of the public channel.

Definition 2: The region containing the entire achievable se-
cret key rate triples (R12, R13, R23) is the secret key capacity
region.

III. MAIN RESULT

In the following, an inner bound on the pairwise key capacity
region of the source model with rate-limited public channel is

given. First, we define:

r12 = [I(S12;X2 |S23S32) − I(S12;X3, S13 |S23, S32) ]
+,

r21 = [I(S21;X1 |S13S31) − I(S21;X3, S23 |S13, S31 )]
+,

r13 = [I(S13;X3 |S23S32) − I(S13;X2, S12 |S23, S32) ]
+,

r31 = [I(S31;X1 |S12S21) − I(S31;X2, S32 |S12, S21 )]
+,

r23 = [I(S23;X3 |S13S31) − I(S23;X1, S21 |S13, S31) ]
+,

r32 = [I(S32;X2 |S12S21) − I(S32;X1, S31 |S12, S21 )]
+,

I12 = I(S12;S21 |X3, S13, S23) ,
I13 = I(S13;S31 |X2, S12, S32) ,
I23 = I(S23;S32 |X1, S21, S31) , I1 = I(S21;S31 |X1) ,
I2 = I(S12;S32 |X2) , I3 = I(S13;S23 |X3) .
Theorem 1: In the described setup, all rates in the closure of

the convex hull of the set of all key rate triples (R12, R13, R23)
that satisfy the following region, are achievable:

R12 > 0, R13 > 0, R23 > 0,

R12 ≤ r12+r21 − I12,

R13 ≤ r13+r31 − I13,

R23 ≤ r23+r32 − I23,

R12 +R13 ≤ r12+r21+r13+r31 − I12 − I13 − I1,

R12 +R23 ≤ r12+r21+r23+r32 − I12 − I23 − I2,

R13 +R23 ≤ r13+r31+r23+r32 − I13 − I23 − I3,

R12 +R13 +R23 ≤ r12+r21+r13+r31+r23+r32−
I12 − I13 − I23 − I1 − I2 − I3 (9)

for random variables taking values in sufficiently large finite
sets and according to the distribution:

p(s12, s13, s21, s23, s31, s32, x1, x2, x3) = p(x1, x2, x3).
p(s12|x1)p(s13|x1)p(s21|x2)p(s23|x2)p(s31|x3)p(s32|x3)

and subject to the constraints:

I(S12;X1|X2,S32)+I(S13;X1|X3,S23)≤R1, (10)
I(S21;X2|X1,S31)+I(S23;X2|X3,S13)≤R2, (11)
I(S31;X3|X1,S21)+I(S32;X3|X2,S12) ≤R3, (12)
I(S12;X1|X2,S32)+I(S21;X2|X1, S31)+I(S13,S23;X1,X2|X3)

≤ R1 +R2, (13)
I(S13;X1|X3,S23)+I(S31;X3|X1,S21)+I(S12,S32;X1,X3|X2)

≤ R1 +R3, (14)
I(S23;X2|X3,S13)+I(S32;X3|X2,S12)+I(S21,S31;X2,X3|X1)

≤ R2 +R3. (15)
I(S21,S31;X2,X3|X1) +I(S12,S32;X1,X3|X2) +I(S13,S23;X1,X2|X3)

≤ R1 +R2 +R3. (16)

Proof: The proof of Theorem 1 is given in Appendix A.

The rate region in Theorem 1 is achieved by double random
binning as well as Wyner-Ziv coding [17] and rate splitting. In
the achievability scheme, the rate of the key between users i
and j consists of two parts. A part is rate of the key generated
by user i to share with user j (rij) and the other part is the
rate of the key generated by user j to share with user i (rji).
The auxiliary random variable Sij stands for the former key
while Sji is associated with the latter key. The total rate of the
key between users i and j is the sum of rij and rji in which
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Fig. 2: Using location information for Pairwise secret key
sharing

term Iij is subtracted to avoid revealing any information about
one of the key to the remaining user (as the eavesdropper) in
the case that the other key is disclosed. The limitation of the
public channel at the users is reflected in (10)-(16).

Remark 1: The region in Theorem 1 reduces to key rate
regions in [7] by considering subset of keys and assuming
unlimited public channel. It also reduces to the key rate region
in [11] by removing public channel limitations.

We do not present a new outer bound on the key capacity
region. The explicit outer bound in [11] with unlimited public
channel holds in this new setup.

IV. A REAL-WORLD EXAMPLE OF THE PAIRWISE KEY
SHARING

In this section, we consider pairwise key sharing between
three users who move in two-dimensional space according to
a discrete time stochastic mobility model. The idea of using
localization information to share a secret key between two
users in the presence of an eavesdropper was first introduced
in [15]. Here, we extend this idea to the pairwise key sharing
between three users. The users are mobile in continuous
space according to a discrete time stochastic mobility model,
independent of each other. Each pair of the three mobile
users exploits the distance between themselves as a source
of common randomness to share a key while the remaining
user tries to make an estimate of that distance as precise as
possible. We borrow some notations from [15]. We assume
the considered time is divided into n discrete time slots where
time slot l includes the time interval [lT, (l+1)T ]. The users’
locations are assumed constant during a time slot. As shown
in Fig. 2, at time slot l, the distance between users i and j
is dij [l] = |xi[l] − xj [l]| in which xi[l] ∈ R2 is the random
variable which denotes user i location at time slot l. In the
same figure, φi[l] shows the angle of the triangle at user i
at time slot l. Each pair first exchanges beacon signals (e.g.,
using propagation delay) to make correlated observations and
then, they communicate over the (limited) public channel to
share a key hidden from the remaining user. This is performed
in two phases as follow.

Localization phase: User i broadcast some beacons (as a
short signal bearing localization information on the initiating
node) at the beginning of time slot l and users j and m obtain
noisy observations of dji[l] and dmi[l], respectively, for i ∈
{1, 2, 3}, j 6= m ∈ {1, 2, 3} − i. We assume the users are

equipped to directional antenna and hence, user i obtain φ̂i[l]
as the noisy version of the angle between the remaining two
users. The same as in [15], we assume the sent information
by the users is corrupted by Gaussian noises. We have:

d̃ij [l] = dij [l] +Nij [l] (17)

φ̃i[l] = φi[l] +Ni[l] (18)

where Nij [l] and Ni[l] are zero-mean Gaussian noises with
variances σ2

ij and σ2
i , respectively. All the noises are indepen-

dent of each other. In the rest of the paper, we consider the
case of i.i.d. locations and additive noises. Thus, we drop index
l in equations (17)-(18). If the number of broadcast beacons
by each user is J ≥ 1, then σ2

ij and σ2
i are divided by J

[15]. We assume that users are perfectly clock synchronized
(it is shown in [15] that clock mismatch does not affect the
theoretical bounds of secret key rates).

Key generation by public channel communications: At
the beginning of this phase, user i has access to its observations

oi={d̃ij={d̃ij [l]}nl=1, d̃im={d̃im[l]}nl=1, φ̃i={φ̃i[l]}nl=1}
(19)

The users communicate over a (rate-limited) public channel
to share secret keys in the pairwise manner. Users i and j
exploit the reciprocity of the distance between themselves to
share a key based on their noisy observations d̃ij and d̃ji,
respectively:

d̃ij = dij +Nij (20)

d̃ji = dji +Nji, (21)

where dij = dji is the real distance and Nij ∼ N (0, σ2
ij/J),

Nji ∼ N (0, σ2
ji/J) assuming each user broadcasted J

beacons at the localization phase. On the other hand, the
remaining user m tries to estimate dij to obtain information
about the key between users i and j as much as possible with
access to (d̃mi, d̃mj , φ̃m).

Due to simplicity, we assume σij = σji between each pair
i and j. In continue, we consider unlimited and rate-limited
public channels separately.

A. unlimited public channel

Since the observation between pair i and j is symmetric
(because of σij = σji) and the public channels at both sides
are unlimited, we choose one-way communication between
each pair. Without loss of generality, it is assumed that user 1
communicates to user 2, user 2 communicates to user 3 and
user 3 communicates to user 1. According to the directions of
communications between users, we choose S12 = d̃12, S23 =
d̃23, S31 = d̃31, S21 = S32 = S13 = null in Theorem 1. Then
the rate region in Theorem 1 is reduced to:

R12 > 0, R13 > 0, R23 > 0, (22)

R12 ≤ I(d̃12;d̃21)−I(d̃12; d̃31, d̃32, φ̃3) (23)

R13 ≤ I(d̃31;d̃13)−I(d̃31; d̃21, d̃23, φ̃2) (24)

R23 ≤ I(d̃23;d̃32)−I(d̃23; d̃12, d̃13, φ̃1) (25)



Each potential eavesdropper combines its available observa-
tions to estimate the distance between the other two users to
enlarge the subtracted mutual information terms in (23)-(25).
Thus, user m as a potential eavesdropper of the key between
users i and j makes estimate of dij as:

d̂ij =
√
d̃2mi + d̃2mj − 2d̃mid̃mj cos(φ̃m) (26)

where the parameters inside the square root are defined as
(17) and (18). For J � 1, σ2

ij/J � d2ij and σ2
i /J ≈ 0,

∀i 6= j ∈ {1, 2, 3} with high probability and (59) can be
approximated as [15]:

d̂ij = dij +N (0,
σ̂2
ij

J
) (27)

Substituting (27) as the estimate of dij in (23)-(25) results in
the following rate region (it can be shown that this is the best
that each potential eavesdropper can do):

Theorem 2: Using unlimited public channel in the pairwise
key sharing from the localization information, all rates in
the closure of the convex hull of the set of all key rate
triples (R12, R13, R23) that satisfy the following region, are
achievable:

R12 > 0, R13 > 0, R23 > 0,

R12 ≤
1

2
E([log(1 +

d412J
2(σ̂2

12 − σ2
12)

(d212J + σ̂2
12)(2d

2
12Jσ

2
12 + σ4

12)
)]+)

R13 ≤
1

2
E([log(1 +

d413J
2(σ̂2

13 − σ2
13)

(d213J + σ̂2
13)(2d

2
13Jσ

2
13 + σ4

13)
)]+))

R23 ≤
1

2
E([log(1 +

d423J
2(σ̂2

23 − σ2
23)

(d223J + σ̂2
23)(2d

2
23Jσ

2
23 + σ4

23)
)]+)

(28)

in which E is the expectation with respect to (d12, d13, d23)
and

σ̂2
ij,σ

2
im+σ2

jm+Constd12,d13,d23(
σ2
m

4d2ij
− σ2

im

4d2ijd
2
im

−
σ2
jm

4d2ijd
2
jm

)

(29)

for Constd12,d13,d23 = (d12+d13+d23)(d12+d13−d23)(d13+
d23 − d12)(d12 + d23 − d13).

Proof: The proof is given in Appendix B.
In the following, we give an outer bound on the key capacity

region in the described setup for unlimited public channel
based on the explicit outer bound in [11].

Corollary 1: Using unlimited public channel in the pairwise
key agreement from localization information, the following is
an outer bound on the pairwise key capacity region:

R12 > 0, R13 > 0, R23 > 0,

R12 ≤
1

2
log(1 +

E(σ̂2
12)

σ2
12

)

R13 ≤
1

2
log(1 +

E(σ̂2
13)

σ2
13

)

R23 ≤
1

2
log(1 +

E(σ̂2
23)

σ2
23

) (30)

in which E is expected value with respect to (d12, d13, d23)
and σ̂2

ij is defined as (29).
Proof: The proof is given in Appendix C.

B. rate-limited public channel

In this case, the information sent by the users over the public
channel should be subject to the respective rate constraints. In
particular, a noisy version of the observation at each user can
be considered for the key generation. To apply this constraint,
we set:

Sij = d̃ij +Dij (31)

in Theorem 1 where Dij ∼ N (0, σ′2ij). The noises Dij are
independent of each other and of all the observations. In fact
Sij is a noisy version of d̃ij where its related information
can be sent by user i through the public channel with rate
constraint Ri. It should be noted that in the case of rate-limited
public channel, we can not assume one-way communication
between each pair and we need to consider the general two-
way communications to derive the largest rate region. By
considering all the auxiliary random variables of Theorem 1 as
(31) and applying the rate constraints in (10)-(16) in Theorem
1, we deduce:

Theorem 3: Using public channels with rates (R1, R2, R3),
respectively, at users 1,2,3 in the pairwise key sharing from
localization information, the pairwise key rate region on the
top of the next page is achievable which is subject to the
constraints:
1

2
E(log(1+ (2d212J+σ

2
12)σ

2
12

(d212J+σ
2
12)σ

′2
12

)+log(1+
(2d213J+σ

2
13)σ

2
13

(d213J+σ
2
13)σ

′2
13

))≤R1

1

2
E(log(1+ (2d212J+σ

2
12)σ

2
12

(d212J+σ
2
12)σ

′2
21

)+log(1+
(2d223J+σ

2
23)σ

2
23

(d223J+σ
2
23)σ

′2
23

))≤R2

1

2
E(log(1+ (2d213J+σ

2
13)σ

2
13

(d213J+σ
2
13)σ

′2
31

)+log(1+
(2d223J+σ

2
23)σ

2
23

(d223J+σ
2
23)σ

′2
32

))≤R3

(32)

Proof: The proof is given in Appendix B.

V. NUMERICAL RESULTS

In this section, numerical evaluation of the results in Sec-
tions IV-A and IV-B is given. We assume that at each time
slot, all users’ locations are characterized by i.i.d. circularly
symmetric zero mean, unit variance Gaussian random vari-
ables. First we consider unlimited public channel case. We set
σ2
13 = σ2

23 = σ2
1 = σ2

2 = σ2
3 = 0.1 and plot the key rates

as functions of σ2
12. Because of symmetry, the bounds on the

rates R13 and R23 are the same and hence, we analyse one of
them. In Fig. 3, the inner and outer bounds on key rates R12

and R13 are shown as functions of σ2
12. Clearly the bounds

on R12 decrease as σ2
12 increases, while the bounds on R13

increase with the growth of σ2
12. However, for small values

of σ2
12, the bounds on R12 are more affected compared to the

bounds on R13.
Then, we analyse the key rate region in the rate-limited

public channel case. We set R1 = .5, R2 = .2, R3 = .8
and σ2

12 = σ2
13 = σ2

23 = σ2
1 = σ2

2 = σ2
3 = 0.1. In order to

clarify the rate region, we project the 3-D region into three



R12 > 0, R13 > 0, R23 > 0,

R12 ≤
1

2
E([log(1 +

d412J
2(σ̂212 − σ

2
12)

(d212J + σ̂212)(d212J(2σ212 + σ
′2
12) + (σ212 + σ

′2
12)σ212)

)]
+

+ [log(1 +
d412J

2(σ̂212σ
′2
12 − σ

2
12(σ212 + σ

′2
12))

(d212J(σ̂212 + σ212 + σ
′2
12) + σ̂212(σ212 + σ

′2
12))(d212J(2σ212 + σ

′2
21) + (σ212 + σ

′2
21)σ212)

)]
+

)

R13 ≤
1

2
E([log(1 +

d413J
2(σ̂213 − σ

2
13)

(d213J + σ̂213)(d213J(2σ213 + σ
′2
13) + (σ213 + σ

′2
13)σ213)

)]
+

+ [log(1 +
d413J

2(σ̂213σ
′2
13 − σ

2
13(σ213 + σ

′2
13))

(d213J(σ̂213 + σ213 + σ
′2
13) + σ̂213(σ213 + σ

′2
13))(d213J(2σ213 + σ

′2
32) + (σ213 + σ

′2
31)σ213)

)]
+

)

R23 ≤
1

2
E([log(1 +

d423J
2(σ̂223 − σ

2
23)

(d223J + σ̂223)(d223J(2σ223 + σ
′2
23) + (σ223 + σ

′2
23)σ223)

)]
+

[log(1 +
d423J

2(σ̂223σ
′2
23 − σ

2
23(σ223 + σ

′2
23))

(d223J(σ̂223 + σ223 + σ
′2
23) + σ̂223(σ223 + σ

′2
23))(d223J(2σ223 + σ

′2
32) + (σ223 + σ

′2
32)σ223)

)]
+

)

(33)
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Fig. 3: inner and outer bounds on R12 and R13

Fig. 4: R12 −R13 with R1 = .5, R2 = .2,R3 = .8

2-D regions. As we discussed in Section IV-B, in the case of
rate-limited pubic channel, we have two-way communication
between each pair. Each user splits its available public channel
rate to share keys with the other users while the public channel
rates of the other users affect this splitting. As shown in Fig. 4–
6, the rate regions are not necessarily rectangular in contrast to
the case of unlimited public channel. Obviously, the achievable
rates are significantly smaller than the corresponding values in
Fig. 3 where unlimited public channel is assumed (respective
rates at Fig. 3 for σ2

12 = 0.1).

VI. CONCLUSION

The source model of pairwise secret key sharing was investi-
gated with rate-limited pubic channel between three users. An
inner bound on the key capacity region was derived for the
general case of discrete memoryless source observations. We

Fig. 5: R12 −R23 with R1 = .5, R2 = .2,R3 = .8

Fig. 6: R13 −R23 with R1 = .5, R2 = .2,R3 = .8

considered a setup in which the users exploited the distance
between themselves as correlated observations to generate
keys. Inner and outer bounds on the key capacity region were
analyzed for the case of i.i.d. Gaussian observations. As a
future work, we analyze the problem of pairwise key sharing
between arbitrary number of users who access to limited public
channel.

APPENDIX A

Proof of Theorem 1

We fix the distribution the same as in Theorem 1. Double
random binning, rate splitting technique and Wyner-Ziv coding
are used to prove the achievability of the region presented
in Theorem 1. The total key between each pair of the users
consists of two parts; each part is generated by one of them. In
continue, we describe code construction, encoding, decoding



and security analysis. In the following, a random variable is
denoted by an upper case letter and its realization is denoted
by the corresponding lower case letter. X (resp. x). denotes n
repetitions of random variable X , i.e., Xn (resp. its realization
xn).
Sij denotes the auxiliary random variable associated with

key Kij generated by user i to be shared with user j. For code
construction, user 1 chooses 2n(r12+r

′
12+r

′′
12) and 2n(r13+r

′
13+r

′′
13)

sequences s12 and s13 from Anε′(PS12
) and Anε′(PS13

), respec-
tively, in which ε′ > 0 can be chosen arbitrarily small. Anε′(PX)
denotes a set of ε′−typical sequences xn with respect to distri-
bution p(x). These sequences are labeled as s12(k12,k′12,k′′12)
and s13(k13,k′13,k′′13) such that:

k12∈K12={1,...,2nr12},k′12∈K′
12={1,...,2nr′12},k′′12∈K′′

12={1,...,2nr′′12},
k13∈K13={1,...,2nr13},k′13∈K′

13={1,...,2nr′13},k′′13∈K′′
13={1,...,2nr′′13},

Sequences s12 and s13 are produced by user 1 to share secret
keys with user 2 and user 3, respectively. Similarly, sequences
s21(k21,k′21,k′′21) and s23(k23,k′23,k′′23) are generated by user
2 to share secret keys with users 1 and 3, respectively, and
sequences s31(k31,k′31,k′′31) and s32(k32,k′32,k′′32) are generated
by user 3 to share secret keys with users 1 and 2, respectively.
These sequences are similarly labeled using double random
binning. We choose:

r′′12+ r′′21 =I(S12, S21;X3, S13, S23)+I(S12;S21)− ε′ (34)
r′′13+ r′′31 =I(S13, S31;X2, S12, S32)+I(S13;S31)− ε′ (35)
r′′23+ r′′32 =I(S23, S32;X1, S31, S21)+I(S23;S32)− ε′ (36)

For encoding, user 1 looks for sequences s12 and s13; each
is ε′−jointly typical with x1 and declares error if there are
no such sequences. Symmetrically, (s21, s23) and (s31, s32)
are respectively chosen by user 2 and user 3 based on their
observations x2 and x3. According to Covering Lemma [16],
the error probability of choosing these sequences would be
arbitrarily small if we have:

r12 + r′12 + r′′12=I(S12;X1) + ε′′, (37)
r13 + r′13 + r′′13=I(S13;X1) + ε′′, (38)
r21 + r′21 + r′′21 =I(S21;X2) + ε′′, (39)
r23 + r′23 + r′′23=I(S23;X2) + ε′′, (40)
r31 + r′31 + r′′31 =I(S31;X3) + ε′′. (41)
r32 + r′32 + r′′32=I(S32;X3) + ε′′. (42)

in which ε′′ > 0 is chosen such that ε′′ > ε′, (e.g., ε′′ = 2ε′).
Not that there is no need to take into account the joint typical-
ity of s12 and s13 separately since according to the distribution
of random variables in Theorem 1, I(S12, S13|X1) = 0. The
same holds for the auxiliary random variables at users 2 and 3.
Then, user i selects the respective index kij of sij as the key
for sharing with user j. For such sequence, the respective index
k′ij is the required information to be sent from user i to user j
such that user j can decode the corresponding key. Thus, user
1 sends k′12 and k′13 to users 2 and 3, respectively, through
its public channel with rate constraint R1. Similarly users 2
sends k′21 and k′23 and 3 sends k′31 and k′32 to the respective

users through their public channels with rate constraints R2

and R3. We assume:

r′12 + r′13 ≤ R1, (43)
r′21 + r′23 ≤ R2, (44)
r′31 + r′32 ≤ R3, (45)

Next in the decoding step, it is shown that (43)-(45) hold
according to the rate constraints (10)-(16) in Theorem 1.

For decoding, according to (43)-(45), we assume that user
1 has received k′21 and k′31 from users 2 and 3, respectively
with arbitrarily small probability of error. With access to
observation x1 and indices k′21 and k′31, user 1 chooses
sequences s21 and s31 such that:

(s21(k21, k′21, k
′′
21), s31(k31, k

′
31, k

′′
31), x1) ∈ Anε1(PS21,S31,X1),

when such (s21, s31) exists and is unique. Otherwise,
it declares error. Symmetrically, users 2 and 3 decode
the sequence pairs (s12(k12, k′12, k′′12), s32(k32, k′32, k′′32)) and
(s13(k13, k′13, k′′13), s23(k23, k′23, k′′23)), respectively. It can be
shown that the decoding error probability at the users is
bounded as (P (n)

ei is the decoding error probability at user i):

P
(n)
e1 ≤ ε1 + 2n(4ε1+I(S21,S31;X2,X3|X1)−(r′21+r

′
31))+

2n(3ε1+I(S21;X2|S31,X1)−r′21) + 2n(3ε1+I(S31;X3|S21,X1)−r′31),

P
(n)
e2 ≤ ε1 + 2n(4ε1+I(S12,S32;X1,X3|X2)−(r′12+r

′
32))+

2n(3ε1+I(S12;X1|S32,X2)−r′12) + 2n(3ε1+I(S32;X3|S12,X2)−r′32),

P
(n)
e3 ≤ ε1 + 2n(4ε1+I(S13,S23;X1,X2|X3)−(r′13+r

′
23))+

2n(3ε1+I(S13;X1|S23,X3)−r′13) + 2n(3ε1+I(S23;X2|S13,X3)−r′23).

If we set:

r′21 + r′31 > I(S21, S31;X2, X3|X1) + 2ε′ (46)

r′21 > I(S21;X2|S31, X1) + ε′ (47)

r′31 > I(S31;X3|S21, X1) + ε′ (48)

r′12 + r′32 > I(S12, S32;X1, X3|X2) + 2ε′ (49)

r′12 > I(S12;X1|S32, X2) + ε′ (50)

r′32 > I(S32;X3|S12, X2) + ε′ (51)

r′13 + r′23 > I(S13, S23;X1, X2|X3) + 2ε′ (52)

r′13 > I(S13;X1|S23, X3) + ε′ (53)

r′23 > I(S23;X2|S13, X3) + ε′ (54)

then for i = 1, 2, 3 we have:

P
(n)
ei ≤ ε1 + 2n(4ε1−2ε

′) + 2n(3ε1−ε
′) + 2n(3ε1−ε

′).

By setting ε1= ε
32 and ε′= 4ε1 = ε

8 , we choose n sufficiently
large that 2−nε1≤ε1, and then P (n)

ei ≤4ε1=
ε
8 .

After these steps Ki,j = (Kij ,Kji) is shared between users
i and j. Replacing equations (46)-(54) and (34)-(36) in (37)-
(42), we obtain:

r12 + r21 ≤ r12+r21 − I12,
r13 + r31 ≤ r13+r31 − I13,
r23 + r32 ≤ r23+r32 − I23,
r12 + r21 + r13 + r31 ≤ r12+r21+r13+r31 − I12 − I13 − I1,
r12 + r21 + r23 + r32 ≤ r12+r21+r23+r32 − I12 − I23 − I2,
r13 + r31 + r23 + r32 ≤ r13+r31+r23+r32 − I13 − I23 − I3,
r12 + r21 + r13 + r31 + r23 + r32 ≤ r12+r21+r13+r31+r23+
r32 − I12 − I13 − I23 − I1 − I2 − I3.



By setting R12 = r12+r21, R13 = r13+r31, R23 = r23+r32,
and applying Fourier-Motzkin elimination [18] to the above
region, the rate region of Theorem 1 can be derived.

Remark 2: The necessary conditions (43)-(45) hold ac-
cording to the rate constraints (10)-(16) in Theorem 1 and
equations (46)-(54).

Now, we should check the security conditions of definition
1. We give the proof of (7) for i = 1, j = 2, and m = 3.
By symmetry, the other security conditions are deduced. By
substituting K1,2 = (K12,K21), F1 = (K ′12,K

′
13) and F2 =

(K ′21,K
′
23) we have:

I(K12,K21;X3,K
′
12,K

′
13,K

′
21,K

′
23)

(a)

≤ I(K12,K21;X3, S13, S23,K
′
12,K

′
21)

= H(K12,K21)−H(K12,K21|X3, S13, S23,K
′
12,K

′
21)

= H(K12,K21)−H(K12,K21,K
′
12,K

′
21|X3, S13, S23)

+H(K′
12,K

′
21|X3, S13, S23)

≤ H(K12,K21)−H(K12,K21,K
′
12,K

′
21|X3,S13,S23)+H(K′

12,K
′
21)

= H(K12,K21)−H(K12,K21,K
′
12,K

′
21,K

′′
12,K

′′
21|X3, S13, S23)

+H(K′
12,K

′
21) +H(K′′

12,K
′′
21|K12,K21,K

′
12,K

′
21,X3, S13, S23)

(b)

≤ H(K12,K21)−H(K12,K21,K
′
12,K

′
21,K

′′
12,K

′′
21|X3, S13, S23)

+H(K′
12,K

′
21) + nε2

(c)
= H(K12,K21)−H(S12, S21|X3, S13, S23)+H(K′

12,K
′
21)+nε2

(d)

≤H(K12,K21)+H(K′
12,K

′
21)− nH(S12, S21|X3, S13, S23)

+n(ε2 + ε3)

=H(K12) +H(K21)+H(K′
12,K

′
21)

−nH(S12, S21|X3, S13, S23) + n(ε2 + ε3)− I(K12;K21)

≤H(K12) +H(K21)+H(K′
12) +H(K′

21)
−nH(S12, S21|X3, S13, S23) + n(ε2 + ε3)− I(K12;K21)

=(H(K12) +H(K21)+H(K′
12)+H(K′

21) +H(K′′
12) +H(K′′

21))
−H(K′′

12)−H(K′′
21)−n(H(S12,S21|X3,S13,S23)−ε2−ε3)−I(K12;K21)

(e)
= −nH(S12|X1)−nH(S21|X2)−I(K12;K21)+n(2ε

′′+ε′+ε2+ε3)
≤ n(2ε′′ + ε′ + ε2 + ε3)− I(K12;K21)
≤ n(2ε′′ + ε′ + ε2 + ε3) = n(5ε′ + ε2 + ε3)

In the above equations, (a) follows from the fact that k′13
and k′23 are induces of the sequences sN13 and sN23. To prove
(b), the same approach as lemma 2 in [7] can be exploited
to show H(S12,S21|X3,S13,S23,K

′
12,K

′
21K12,K21) ≤ nε2

(based on the rates defined in (34)-(36)). (c) is due to the
fact that that with access to (k12, k

′
12, k

′′
12) and (k21, k

′
21, k

′′
21)

sequences s12 and s21 are determined. To prove (d), the
same approach as lemma 1 in [7] can be exploited to show
H(S12,S21|X3,S13,S23) ≥ nH(S12, S21|X3, S13, S23)−nε3.
(e) is followed from the definition of the rates in (34), (37)
and (39). By defining ε2 = ε3 = ε

8 , we obtain:

I(K12,K21;X3,K
′
12,K

′
13,K

′
21,K

′
23) ≤ n(5ε′+ε2+ε3) = n

7ε

8

To show that the total rate of the key between users 1
and 2 is the sum of rates r12 and r21, we should prove the
independence of K12 and K21. When analyzing the security
condition, we showed that:

I(K12,K21;X3,K
′
12,K

′
13,K

′
21,K

′
23) ≤ n(5ε′+ε2+ε3)−I(K12;K21)

which implies:

I(K12;K21) ≤ n(5ε′ + ε2 + ε3)

and hence, we deduce the independence of the keys.

APPENDIX B

Proof of Theorem 2

In the case of unlimited public channel, it is assumed that user
1 communicates to user 2, user 2 communicates to user 3 and
user 3 communicates to user 1. According to the directions of
communications between users, we choose S12 = d̃12, S23 =
d̃23, S31 = d̃31, S21 = S32 = S13 = null in Theorem 1. Then
the rate region in Theorem 1 is reduced to:

R12 > 0, R13 > 0, R23 > 0, (55)

R12 ≤ I(d̃12;d̃21)−I(d̃12; d̃31, d̃32, φ̃3) (56)

R13 ≤ I(d̃31;d̃13)−I(d̃31; d̃21, d̃23, φ̃2) (57)

R23 ≤ I(d̃23;d̃32)−I(d̃23; d̃12, d̃13, φ̃1) (58)

Each potential eavesdropper combines its available observa-
tions to estimate the distance between the other two users to
enlarge the subtracted mutual information terms in (56)-(58).
Thus, user m as a potential eavesdropper of the key between
users i and j makes estimate of dij as:

d̂ij =
√
d̃2mi + d̃2mj − 2d̃mid̃mj cos(φ̃m) (59)

By substituting the parameters inside the square root as (17)
and (18), we obtain:

d̂ij =
√
d2ij +A (60)

in which A is defined in (61) at the top of the next page.
For J � 1, σ2

ij/J � d2ij and σ2
i /J ≈ 0, ∀i 6= j ∈ {1, 2, 3}

with high probability. Then (60) can be linearly approximated
as:

d̂ij ≈ dij(1 +
A

2d2ij
) (62)

Again by assuming J � 1, σ2
ij/J � d2ij and σ2

i /J ≈ 0

and ignoring terms N2
mi, N

2
mj and NmiNmjcos(φ̃m) in A and

assuming sin(Nm2 ) ≈
Nm
2 , we have

d̂ij ≈ dij+
Nmi(dmi−dmj cos(φm))

dij
+
Nmj(dmj−dmi cos(φm))

dij
+

Nmdmidmj sin(φm)

dij
(63)

Since the noise terms in (63) are three independently
Gaussian noises, we deduce:

d̂ij ≈ dij +N (0,
σ̂2
ij

J
) (64)

in which:

σ̂2
ij =

σ2
mi(dmi−dmj cos(φm))2

d2ij
+
σ2
mj(dmj−dmi cos(φm))2

d2ij
+

σ2
m(dmidmj sin(φm))

2

d2ij
(65)

By substituting:

cos(φm) =
d2mi + d2mj − d2ij

2dmidmj



A =N2
mi+N

2
mj+2(dmiNmi+dmjNmj−dmiNmjcos(φ̃m)−dmjNmicos(φ̃m)−NmiNmjcos(φ̃m)+2dmidmjsin(

Nm

2
) sin(φm+

Nm

2
)) (61)

and

sin2(φm) = 1− cos2(φm)

in (65), it is rewritten as:

σ̂2
ij=σ

2
im+σ2

jm+Constd12,d13,d23(
σ2
m

4d2ij
− σ2

im

4d2ijd
2
im

−
σ2
jm

4d2ijd
2
jm

)

(66)

in which

Constd12,d13,d23 = (d12 + d13 + d23)×
(d12 + d13 − d23)(d13 + d23 − d12)(d12 + d23 − d13)

Now, we calculate the bound on rate R12, using (56). The
other rates bounds are similarly calculated. We have:

R12 ≤ H(d̃12|d̂12)−H(d̃12|d̃21) (67)

Using (64) and (17), and the fact that at each time slot, dij
is constant, the conditionally Gaussian entropies in (67) are
calculated. Then, the expected values are computed according
to the distributions of dij , dmi and dmj .

Proof of Theorem 3

To satisfy the rate limitations of the public channels, each user
considers a noisy version of its observation to share keys with
the other users. We set:

Sij = d̃ij +Dij (68)

in Theorem 1 where Dij∼N (0, σ′2ij). The noises Dij are inde-
pendent of each other and of all the observations. In contrast to
the unlimited public channel case, the communication between
each pair is two-way in general and the total key shared
between each pair consists of two keys. By substituting all the
auxiliary random variables of Theorem 1 similarly to (68), it
is seen that the sum rates in (9) and also in the constraints
(13)-(16) are inactive. Then the rate region is reduced to:

R12 ≤ [I(d̃12+D12;d̃21)−I(d̃12+D12; d̂12)]
+

+[I(d̃21+D21;d̃12|d̃12+D12)−I(d̃21+D21; d̂12|d̃12+D12)]
+,

R13 ≤ [I(d̃13+D13;d̃31)−I(d̃13+D13; d̂13)]
+

+[I(d̃31+D31;d̃13|d̃13+D13)−I(d̃31+D31; d̂13|d̃13+D13)]
+,

R23 ≤ [I(d̃23+D23;d̃32)−I(d̃23+D23; d̂23)]
+

+[I(d̃32+D32;d̃23|d̃23+D23)−I(d̃32+D32; d̂23|d̃23+D23)]
+,

and subject to the constraints:

I(d̃12+D12;d̃12|d̃21)+I(d̃13+D13;d̃13|d̃31)≤R1,

I(d̃21+D21;d̃21|d̃12)+I(d̃23+D23;d̃23|d̃32)≤R2,

I(d̃31+D31;d̃31|d̃13)+I(d̃32+D32;d̃32|d̃23)≤R3.

By the same arguments as in the unlimited public channel
case and the same calculations, the rate region in Theorem 3
is deduced.

APPENDIX C

Proof of Corollary 1

We use the following explicit outer bound on the pairwise key
capacity region, given in [11], which is based on unlimited
public channel:

R12 ≤ I(X1;X2|X3),

R13 ≤ I(X1;X3|X2),

R23 ≤ I(X2;X3|X1).

We calculate the upper bound on R12 and similarly, the
other upper bounds can be concluded. We have:

I(X1;X2|X3)
(a)
= I(d̃12; d̃21|d̃31, d̃32, φ̃3)

= H(d̃12|d̃31, d̃32, φ̃3)−H(d̃12|d̃21, d̃31, d̃32, φ̃3)
≤ H(d̃12|d̃31, d̃32, φ̃3)−H(d̃12|d12, d̃21, d̃31, d̃32, φ̃3)
(b)
= H(d̃12|d̃31, d̃32, φ̃3)−H(d̃12|d12)
= H(d̃12|d̃31, d̃32, φ̃3)− 1

2 log(2πeσ
2
12)

(c)
= H(d̃12|d̂12, d̃31, d̃32, φ̃3)− 1

2 log(2πeσ
2
12)

≤ H(d̃12|d̂12)− 1
2 log(2πeσ

2
12)

= H(d̃12 − d̂12|d̂12)− 1
2 log(2πeσ

2
12)

≤ H(d̃12 − d̂12)− 1
2 log(2πeσ

2
12)

(d)

≤ 1
2 log(2πe(σ

2
12 + E(σ̂2

12)))− 1
2 log(2πeσ

2
12)

= 1
2 log(1 +

E(σ̂2
12)

σ2
12

)

In the above equations, (a) follows from the fact that distances
d12, d13 and d23 and also the respective noises are independent
of each other. (b) is true since d̃12 − d12 − (d̃21, d̃31, d̃32, φ̃3).
(c) is due to the fact that d̂12 is a function of (d̃31, d̃32, φ̃3).
(d) is deduced with the argument that for a given variance,
Gaussian distribution maximizes the entropy. To calculate the
entropy of d̃12 − d̂12, we use the following formula:

Var(d̃12 − d̂12) = E(Var(d̃12 − d̂12|d12, d13, d23))+
Var(E(d̃12 − d̂12|d12, d13, d23)).

Since

E(d̃12 − d̂12|d12, d13, d23) = 0,

and

Var(d̃12 − d̂12|d12, d13, d23) = σ2
12 + σ̂2

12,

we have:

Var(d̃12 − d̂12) = σ2
12 + E(σ̂2

12) (69)

and then, the outer bound in Corollary 1 is deduced.
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