
Embedded Systems for Mechatronics 1, MF2042
Lab – AVR32 Intro
version 2015-10-13

 1

Lab AVR32 Intro

Aim
Getting started with AVR32: the IDE and the microcontroller

Literature
AVR32 manuals, tutorials (getting started with HW and SW, creating your own
program, debugging)

Brief summary
AVR32 intro, GPIO using registers and drivers. Peripheral units; PWM, A/D.

Reporting
Demonstrate all programs for the teaching assistants.

0. Introduction
The EVK1100 is equipped with three push buttons and 6 LEDs. The buttons and
LEDs are connected to the following ports:

Item Pin GPIO pin

(GPIO number)
GPIO
port/pin

Push button PB0 PX16 GPIO 88 2/24
Push button PB1 PX19 GPIO 85 2/21
Push button PB2 PX22 GPIO 82 2/18
LED0 (PCB label LED1) PB27 GPIO 59 1/27
LED1 (PCB label LED2) PB28 GPIO 60 1/28
LED2 (PCB label LED3) PB29 GPIO 61 1/29
LED3 (PCB label LED4) PB30 GPIO 62 1/30
LED4/5 (PCB label LED5) PB19/PB20

(Bicolored LED,
Red/Green)

GPIO 51/52 1/19 / 1/20

Embedded Systems for Mechatronics 1, MF2042
Lab – AVR32 Intro
version 2015-10-13

 2

LED6/7 (PCB label LED6) PB21/PB22
(Bicolored LED,
Red/Green)

GPIO 53/54 1/21 / 1/22

Refer to the AVR32-manual for how to translate between pin number, GPIO pin
number and GPIO port/pin numbers, or see the below.

GPIO port = floor((GPIO number) / 32), example: floor((36)/32) = 1
GPIO pin = GPIO number mod 32, example: 36 mod 32 = 4

1. GPIO with registers

The following code lights one LED.

int main(void){
AVR32_GPIO.port[1].gpers = 1 <<27; //enable GPIO control
AVR32_GPIO.port[1].oders = 1 <<27; //enable output driver
AVR32_GPIO.port[1].ovrc = 1 <<27; //clear value of pin
while(1){
}
}

The following lines can be used to read pins, i.e. the push buttons
AVR32_GPIO.port[2].gpers = 1 <<24; //enable GPIO control
int i=(AVR32_GPIO.port[2].pvr >> 24) & 0x01; //read port value
register

Exercises
1.1 Turn on all LEDs.

1.2 Turn on one LED when a push button is pressed

1.3 Make one bicolored LED change color every time a push button is being

pushed.

1.4 Make one bicolored LED change color every time a push button is pressed
(and released)

More exercises
1.5 Read all push buttons at once, with one line of code

1.6 Control all LEDs with one command, one line of code

Embedded Systems for Mechatronics 1, MF2042
Lab – AVR32 Intro
version 2015-10-13

 3

2. GPIO with low-level drivers

Use the drivers in the AVR32 Software Framework. Use the ASF wizard and verify
that the following line appears in asf.h.

#include “gpio.h”

The API for the GPIO-module is easiest found in the header-file (gpio.h). Use, for
example, the following functions:

gpio_enable_gpio_pin(unsigned int pin)
gpio_set_gpio_pin(unsigned int pin)
gpio_get_pin_value(unsigned int pin)

Exercises (same as above)
2.1 Turn on all LEDs.

2.2 Turn on one LED when a push button is pressed

2.3 Make one bicolored LED change color every time a push button is being

pushed.

2.4 Make one bicolored LED change color every time a push button is pressed
(and released)

More exercises (not same as above)

2.5 The EVK1100 is also equipped with a small joystick. Investigate which
ports/pins this is connected to, and write a small program that turns on/off
LEDs with different settings on the joystick.

3. GPIO with board-specific drivers

Use the board-specific drivers from the AVR32 Software Framework. Check out
especially the files board.h, led.c and led.h.

Make sure that the following is included in asf.h:

#include “board.h”

These drivers (led.c) contain functions such as:

extern void LED_Toggle(U32 leds);

extern void LED_Display(U32 leds);

Embedded Systems for Mechatronics 1, MF2042
Lab – AVR32 Intro
version 2015-10-13

 4

Exercises

3.1 Write a program that turns on and off LEDs using the push-buttons using these
drivers (use LED_On(), LED_Off(), LED_Display()).

3.2 Do you understand the differences between LED_Display() and
LED_On()? If not, experiment further, and be prepared to explain the
differences to the lab assistants!

4. A/D – Analog to Digital conversion

With the peripheral units, we mainly use the low-level drivers and the examples found
in the API and documentation of the AVR32 Software Framework.

Use functions such as:

extern void adc_configure(volatile avr32_adc_t * adc);
extern void adc_start(volatile avr32_adc_t * adc);
extern unsigned long adc_get_value(volatile avr32_adc_t * adc,
unsigned short channel);

The EVK1100 contains three analogue sensors; one potentiometer, one photoresistor
(light sensor) and one temperature sensor. These are connected to the AVR32
according to the following table:

Item AVR32 port/pin / ADC channel
Temperature sensor PA21 / ADC0
Potentiometer PA22 / ADC1
Photoresistor PA23 / ADC2

Exercises
4.1 What is the resolution of the A/D-converter? (Check the manual)

4.2 Write a small program that reads the value of the photoresistor and turns on all

LEDs when there is low light shining on the photoresistor (covered by the
hand), and turns off all LEDs when it’s lighter. Demonstrate for the lab
assistants.

5. PWM

The PWM module can be configured so that a GPIO pin acts as PWM output. On
EVK1100, one PWM channel, PWM3, is connected to PB22, same as one of the
bicolored LEDs (PB22 = GPIO number 54).

Use ASF wizard to include the PWM divers in your project.

Embedded Systems for Mechatronics 1, MF2042
Lab – AVR32 Intro
version 2015-10-13

 5

The following example configures a PWM output on PB22.

#include "asf.h"

#define EXAMPLE_PWM_PIN AVR32_PWM_3_PIN
#define EXAMPLE_PWM_FUNCTION AVR32_PWM_3_FUNCTION

int main(void) {
 board_init();

 unsigned int channel_id = 3;
 avr32_pwm_channel_t pwm_channel = { .ccnt = 0 }; // One
channel config.
 gpio_enable_module_pin(EXAMPLE_PWM_PIN,
EXAMPLE_PWM_FUNCTION);
 pwm_channel.CMR.cpre = AVR32_PWM_CPRE_MCK_DIV_256; //
Channel prescaler.
 pwm_channel.cdty = 1; // Channel duty cycle, should be <
CPRD.
 pwm_channel.cprd = 20; // Channel period.
 // With these settings, the output waveform period will be :
 // (115200/256)/20 == 22.5Hz == (MCK/prescaler)/period, with
MCK == 115200Hz,
 // prescaler == 256, period == 20.

 pwm_channel_init(channel_id, &pwm_channel); // Set channel
configuration to channel 3.
 pwm_start_channels(1 << channel_id); // Start channel 3.

 while(1){

 }
 return 0;
}

Exercises

5.1 How many PWM channels exist?

5.2 Read the manual, look at the API and the example program, and make sure
that you are capable of configuring any PWM channel, for any frequency and
duty cycle. Demonstrate this for the lab assistants.

