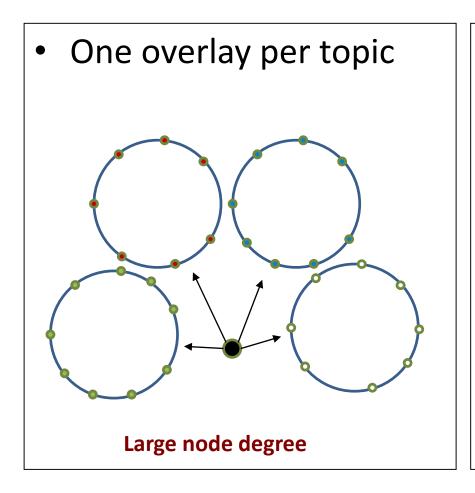
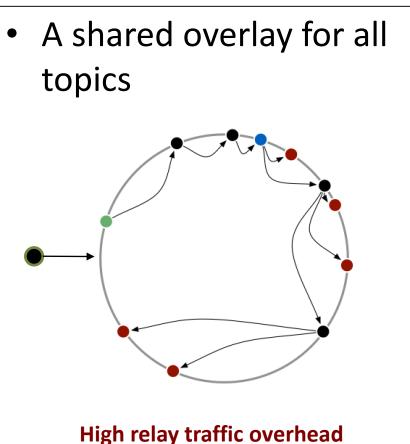


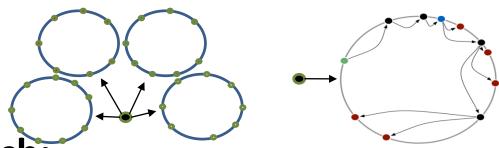
Scribe: Group Management

- Each group (topic) has an unique groupId.
 - The Scribe node with a nodeld numerically closest to the groupId acts as the rendez-vous point for the associated group.
- The rendez-vous point is the root of the *multicast tree* created for the group.
- Forwarders may or may not be members of the group.
- Each forwarder maintains a children table for the group containing an entry
 - (IP address and nodeld) for each of its children in the multicast tree
- The properties of Pastry routes ensure that this mechanism produces a tree without the loops


Repairing multicast trees


- What if a node fails (e.g., one of the forwarders)?
- Heartbeat mechanism to node's children
- A child suspects that its parent is faulty when it fails to receive heartbeat messages
- Upon detection of the failure of its parent, a node rejoins the tree.
 - The node calls Pastry to route a JOIN message to the group's identifier.
 - Pastry will route the message to a new parent, thus repairing the multicast tree.

Scribe: Pros/cons


- © Gets all the good properties of underlying structured P2P:
 - Decentralized construction
 - Scalability, Connectivity, Low diameter, Robustness
 - Node degree is not blown up
- 😊 Down sides:
 - Might involve many non-interested nodes
 - Does not take into account subscription similarities

Building Decentralized Pub/Sub

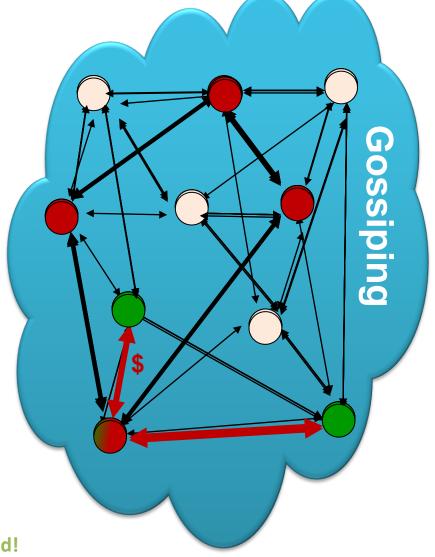
Vitis [IPDPS 2011]

- Hybrid Approach:
 - Cluster similar nodes together (unstructured overlay like Spidercast)
 - Minimize the number of relay nodes by exploiting user subscription correlation & event publication rates
 - Account for the underlying topology (bandwidth & cost) [DAIS 2012]
 - Employ Rendezvous routing to enable sub-clusters find each other (structured overlay – Like Scribe)
 - Fixed node degree
 - Purely gossip driven

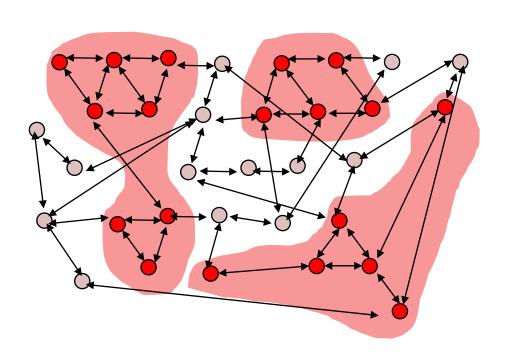
Overlay Creation by Gossip

Think: Spidercast by T-Man

- Gossiping enables us to find and cluster peers with similar interests connected by cheap and low-latency links
 - A node starts with a local fixed size view
 - Performs a bidirectional exchange of the view with a random node ⇒
 2 views
 - Keeps the only the *preferred* (preference function favors similar peers on cheap and low-latency links) nodes in the view \Rightarrow 1 view
 - Repeat

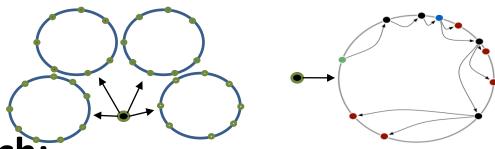

Clustering Similar Nodes Together

- Peer interest similarity metric (e.g., preference function in Tman)
 - i.e., Jaccard index

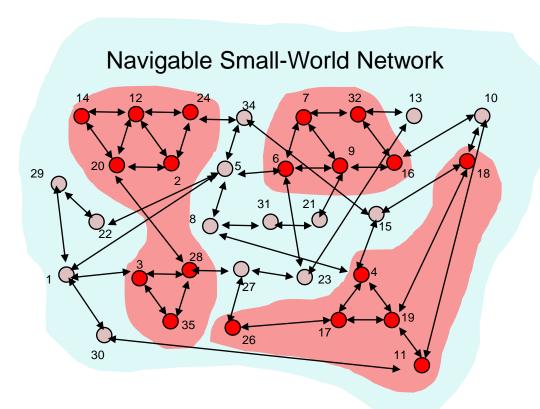

Node subscriptions s1, s2 \subseteq T

 $sim(s1, s2) = |s1 \cap s2|/|s1 \cup s2|$

- Locality-aware [DAIS 2012]
 - Weighted by link cost (bandwidth and \$)
 - Weighted by Topic publication rates
- Number of neighbors is limited!
 - Topic-connectivity (might) be not preserved!



Problem: How to publish?


- Clustering peers of similar interests into bandwidth and cost effective clusters
 - Clusters might (will) be disjoint
 - Publishing requires connected components for each topic

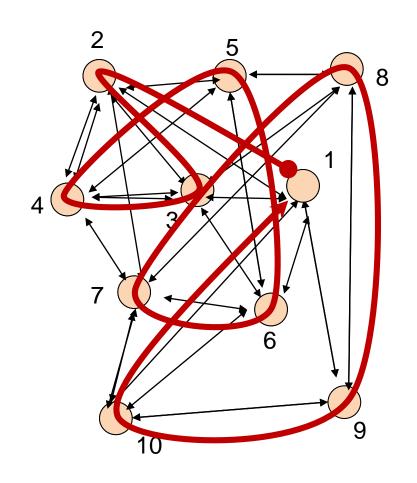
Vitis [IPDPS 2011]

- Hybrid Approach:
 - Cluster similar nodes together (unstructured overlay)
 - Minimize the number of relay nodes by exploiting user subscription correlation & event publication rates
 - Account for the underlying topology (bandwidth & cost) [DAIS 2012]
 - Employ Rendezvous routing to enable sub-clusters find each other (structured overlay)
 - Fixed node degree
 - Purely gossip driven

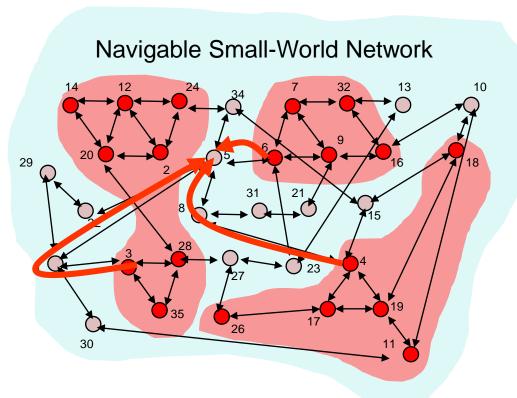
From Unstructured to Structured

 Structure is added (Navigable Small-World made by gossiping)

 Making greedy routing possible


Two type of links:

- Ring Link
- Long-Range link


 Do it with the same gossiping technique!

Building Navigable Structure

- Using gossiping again: think T-man!
- Every peer decides on random ID
- Updating ranking function for choice of neighbors:
 - Ring Link(s)
 - Long-Range link (Small-World style) for polylogarithmic routing performance

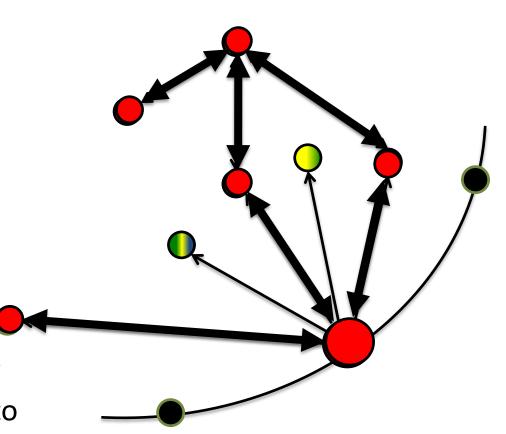
Inter-Cluster Connectivity

Structure is added (Navigable Small-World made by gossiping)

- Ring Link
- Long-Range (finger) link(s)
- Clustering (friend) links

Clusters are connected by greedy routes

- Rendezvous node for each topic (think: Scribe!)
- Gateway for each cluster


All topics become connected

- For publishing "flood the topic", or
- Choose a rendezvous node to publish

Recap: Neighbor Selection

- Ring
- Small-World
- Similarity Clusters
- Forming Topic sub-clusters

 Up to 10 fold reduction of relay traffic as compared to existing approaches (e.g., Scribe, Bayeux)

Vitis Recap

- Large scale pub/sub for heterogeneous environments
 - Huge potential of combining two different paradigms:
 - unstructured similarity based overlays, and
 - Navigability enabled by structured small-world overlays
- Dissemination structures are self-organizing and highly robust due to gossiping

Publish/Subscribe: recap

- Topology
 - Structured/Unstructured/Hybrid
- Event Routing (dissemination):
 - Event flooding/random-walk/Rendez-vous
 - What are the advantages/disadvantages?
- How would you compare different approaches?

Acknowledgements:

Some slides were derived from the lecture notes of G. Chockler (IBM Research Haifa)

