
Lösningsförslag till Tentamen, SF1629, Differentialekvationer och Transformer
II (del 1) 7 januari 2015 kl 8:00 - 13:00.

Tentamen best̊ar av åtta uppgifter där vardera uppgift ger maximalt fyra poäng. Bonus
fr̊an kontrollskrivningen gäller uppgift (1).
Preliminära betygsgränser: 14 poäng ger garanterat betyg E, 17 poäng ger garante-
rat betyg D, 21 poäng ger garanterat betyg C, 24 poäng ger garanterat betyg B och 28
poäng ger garanterat betyg A. Den som har 13 poäng f̊ar betyg Fx och har möjlighet att
komplettera. Kontakta i s̊a fall examinatorn.
Hjälpmedel: Det enda hjälpmedlet vid tentamen är formelsamlingen Mathematics Hand-

book av R̊ade och Westergren.
OBS: För full poäng krävs fullständiga, tydligt presenterade och väl motiverade lösningar
som är lätta att följa. Markera dina svar tydligt.

(1) Lös begynnelsevärdesproblemet

y(t)y′(t) + (1 + y(t)2)t = 0, y(0) = −1.

Lösning: Vi har att göra med en separabel ekvation. Vi kan skriva ekvationen p̊a
formen

y

1 + y2
dy = −tdt

vilket efter integrering ger

1

2
ln(1 + y2) = −t2/2 + C

där C är en konstant. Detta kan skrivas

ln(1 + y2) = −t2 + 2C,

vilket ger

1 + y2 = e−t2+2C = e2Ce−t2 .

L̊ater vi A = e2C (vi tänker p̊a att A därför måste vara postiv) f̊ar vi

y2 = Ae−t2 − 1

vilket medför att
y = ±

√

Ae−t2 − 1.

Vi ska nu välja tecknet, samt värdet p̊a A s̊a att vi f̊ar den lösning som uppfyller
b.v. y(0) = −1. Eftersom y(0) är negtiv väljer vi ′′−′′, dvs

y = −
√

Ae−t2 − 1.

D̊a är y(0) = −
√
A− 1, s̊a vi måste ha A = 2 för att y(0) = −1. S̊aledes är

y = −
√

2e−t2 − 1

den sökta lösningen.
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(2) Samtliga lösningar till ekvationen

(1− t2)y′′(t) + 2ty′(t)− 2y(t) = 0, −1 < t < 1

är polynom av grad ≤ 2. Bestäm den allmänna lösningen till ekvationen, samt den
lösning som uppfyller y(0) = 3, y′(0) = −4.

Lösning: Eftersom det är givet att samtliga lösningar är polynom av grad högst 2,
söker vi lösningar till ekvationen p̊a formen y = a+ bt+ ct2. Insättning i ekvationen
ger oss

0 = (1− t2)y′′(t) + 2ty′(t)− 2y(t) = (1− t2)2c+ 2t(b+ 2ct)− 2(a+ bt+ ct2) = 2c− 2a.

Vi ser att villkoret för att y = a + bt + ct2 ska vara en lösning är att 2c − 2a = 0,
dvs a = c. S̊aledes, för varje val av konstanterna a och b s̊a är y = a + bt + at2 =
a(1+t2)+bt en lösning. Speciellt är y1 = 1+t2 och y2 = t lösningar, och de bildar en
fundamental lösningsmängd. S̊aledes är det den allmänna lösningen vi har hittat,
dvs

y = c1(1 + t2) + c2t

är den allmänna lösningen.
För att hitta den lösning som uppfyller b.v. deriverar vi först: y′ = 2c1t+ c2. Vi

f̊ar 3 = y(0) = c1 och −4 = y′(0) = c2. Allts̊a

y = 3(1 + t2)− 4t

är lösningen som uppfyller b.v.
(Alternativt kan problemet lösas med reduktion av ordning; man ser lätt att

y1 = t är en lösning till ekvationen.)

(3) Bestäm den allmänna lösningen till systemet

dx

dt
= 4x− 3y

dy

dt
= 3x+ 4y

samt skissa den lösning (x(t), y(t)) (för t > 0) som uppfyller x(0) = 1, y(0) = 0.

Lösning: Ekvationen kan skrivas p̊a matrisform:

x′ = Ax

där

x(t) =

(

x(t)

y(t)

)

och A =

(

4 −3
3 4

)

.

Matrisen A har egenvärdena λ = 4± 3i. Vektorn

v1 =

(

1

i

)
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är en egenvektor motsvarande egenvärdet λ = 4− 3i. S̊aledes är

x(t) = v1e
(4−3i)t

en (komplex) lösning till ekvationen. Vi vet fr̊an teorin att real- och imaginärdelen
av denna lösning är tv̊a linjärt oberoende lösningar till ekvationen. Vi har
(

1

i

)

e(4−3i)t =

(

1

i

)

e4t(cos 3t− i sin 3t) = e4t
(

cos 3t

sin 3t

)

+ ie4t
(

− sin 3t

cos 3t

)

.

Allts̊a är

x1(t) = e4t
(

cos 3t

sin 3t

)

, x2(t) = e4t
(

− sin 3t

cos 3t

)

tv̊a (reella) linjärt oberoende lösningar. Därför vet vi att den allmänna lösning till
ekvationen är

x(t) = c1x1(t) + c2x2(t)

där c1, c2 är konstanter.
Det är lätt att se att

x(t) = x1(t) = e4t
(

cos 3t

sin 3t

)

är den lösning som g̊ar igenom punkten (1, 0). Detta är en spiral som snurrar ut̊at,
moturs (rita figur).

(4) Lös integralekvationen

e−t = y(t) + 2

∫

t

0

cos(t− u)y(u)du

Lösning: Vi använder Laplacetransform. Notera att vi har en faltning i högerledet.
Transformering ger

1

s+ 1
= Y (s) + 2

s

s2 + 1
Y (s).

Högerledet kan skrivas

Y (s) + 2
s

s2 + 1
Y (s) =

s2 + 2s+ 1

s2 + 1
Y (s) =

(s+ 1)2

s2 + 1
Y (s).

S̊aledes f̊ar vi

Y (s) =
s2 + 1

(s+ 1)3
.

Partialbr̊aksuppdelning av högerledet ger oss

Y (s) =
s2 + 1

(s+ 1)3
=

{

A

s+ 1
+

B

(s+ 1)2
+

C

(s+ 1)3

}

=
1

s+ 1
− 2

(s+ 1)2
+

2

(s+ 1)3
.

Inverstransform (använd L22 i Beta) ger nu

y(t) = et − 2te−t + t2e−t = (t− 1)2e−t.
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(5) Differentialekvationen

2xy′′(x) + 2y′(x)− y(x) = 0,

har x = 0 som en reguljär singulär punkt.
a) Bestäm indexekvationen samt rekursionsrelationen. (Tips: indexekvationen har
en dubbelrot.) (2p)

b) Bestäm en (icke-trivial) serielösning (x > 0) till differentialekvationen. (2p)

Lösning:Vi använder Frobenius metod och söker lösningar p̊a formen

y(x) =
∞
∑

n=0

anx
r+n.

där a0 6= 0.
a) Termvis derivering ger

y′(x) =
∞
∑

n=0

(r + n)anx
r+n−1 = ra0x

r−1 +
∞
∑

n=1

(r + n)anx
r+n−1

och

xy′′(x) =
∞
∑

n=0

(r+ n− 1)(r+ n)anx
r+n−1 = (r− 1)ra0x

r−1 +
∞
∑

n=1

(r+ n− 1)(r+ n)anx
r+n−1.

Notera ocks̊a att vi kan skriva

y(x) =
∞
∑

n=0

anx
r+n =

∞
∑

n=1

an−1x
r+n−1.

Insatt i ekvationen f̊as nu

0 =2xy′′(x) + 2y′(x)− y(x) = 2

(

(r − 1)ra0x
r−1 +

∞
∑

n=1

(r + n− 1)(r + n)anx
r+n−1

)

+

+ 2

(

ra0x
r−1 +

∞
∑

n=1

(r + n)anx
r+n−1

)

−
∞
∑

n=1

an−1x
r+n−1 =

= r2a0x
r−1 +

∞
∑

n=1

(2(r + n− 1)(r + n)an + 2(r + n)an − an−1)x
r+n−1.

Samtliga kofficienter i högerledet måste vara noll. Eftersom a0 6= 0 måste r2 = 0
(indexekvationen), dvs r = 0. Vidare måste vi ha

0 = 2(r + n− 1)(r + n)an + 2(r + n)an − an−1 = 2(r + n)2an − an−1

för alla n ≥ 1, dvs

an =
an−1

2(r + n)2
, n ≥ 1.
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Eftersom vi måste ha r = 0 f̊ar vi rekursionsrelationen

an =
an−1

2n2
, n ≥ 1.

b) Vi söker nu en serielösning. Vi väljer a0 = 1. Rekursionsrelationen ger d̊a

a1 =
1

2
, a2 =

a1
2 · 22 =

1

22 · 22 , a3 =
a2

2 · 32 =
1

23(3!)2
.

Vi ser mönstret (vilket med fördel visas med hjälp av induktion):

an =
1

2n(n!)2
.

S̊aledes är

y(x) =
∞
∑

n=0

xn

2n(n!)2

en serielösning till den givna ekvationen.

(6) Ekvationen

θ′′(t) + sin θ(t) = 0

beskriver rörelsen av en pendel. Skriv om ekvationen som ett första ordningens
system och avgör om den kritiska punkten (0, 0) (svarande mot θ = 0, dθ/dt = 0)
är stabil eller instabil.

Lösning: Använd Lyapunovs direkta metod för att visa att (0, 0) är en stabil
kristisk punkt. Se Ex 2, sid 559 i B-DP. (Det g̊ar ej att använda linjarisering.)

(7) a) L̊at A vara en reell n × n-matris, och l̊at Φ(t) vara fundamentalmatrisen som
uppfyller

Φ′(t) = AΦ(t), Φ(0) = I

där I är identitetsmatrisen. Visa att Φ(t)Φ(s) = Φ(s+ t) för alla t, s ∈ R. (3p)

b) Bestäm Φ(t) i fallet d̊a

A =

(

1 0
0 −1

)

,

och visa att Φ(t)Φ(s) = Φ(s+ t) för alla t, s ∈ R. (1p)

Lösning:

a) Se uppgift 7.8.15 i B-DP p̊a sidan 428 (och tänk p̊a entydighetssatsen).

b) Eftersom A är en diagonalmatris, s̊a det är lätt att se att vi f̊ar

Φ(t) =

(

et 0
0 e−t

)

.
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Vi noterar att

Φ(t)Φ(s) =

(

et 0
0 e−t

)(

es 0
0 e−s

)

=

(

et 0
0 e−t

)

=

(

et+s 0
0 e−(t+s)

)

= Φ(t+ s).

(8) L̊at p och q vara tv̊a kontinuerliga 1-periodiska reellvärda funktioner. Visa att ek-
vationen

x′(t) + p(t)x(t) = q(t)

har en 1-periodisk lösning x(t) om ekvationen har en lösning x(t) som uppfyller
x(0) = x(1).

Lösning: Eftersom vi har en linjär ekvation, och eftersom p och q är kontinuerliga
p̊a hela R, s̊a vet vi att om a är ett givet tal, s̊a finns det en unik lösning x(t)
till ekationen som uppfyller x(0) = a (det finns t o m en formel för lösningen).
Lösningen existerar för alla t.
Antag nu att x1(t) är en lösning s̊adan att x1(0) = x1(1). Planen är att visa att

x1(t) faktiskt är 1-periodisk, dvs att x1(t+ 1) = x1(t) för alla t.
L̊at x(t) = x1(t+1), och l̊at a = x1(0). Speciellt har vi x(0) = x1(1) = x1(0) = a.

Eftersom x1 är en lösning s̊a har vi

x′

1(t+ 1) + p(t+ 1)x1(t+ 1) = q(t+ 1)

för alla t. Utnyttjar vi nu att p och q är 1−periodiska, och att x1(t+ 1) = x(t), s̊a
kan detta skrivas

x′(t) + p(t)x(t) = q(t).

S̊aledes är b̊ade x(t) och x1(t) lösningar till ekvationen, och x(0) = x1(0) = a. Allts̊a
måste de vara identiska, dvs x1(t) = x(t) för alla t. Men eftersom x(t) = x1(t + 1)
s̊a har vi allts̊a visat att x1(t+ 1) = x1(t) för alla t.


