
DT2118 2015 M. Haseeb, Omar El-shenawy

Training a Convolutional Neural Network for
Phonemes Classification

Mohamed Abdulaziz Ali Haseeb Omar El-shenawy
moaah@kth.se omares@kth.se

Abstract

Convolutional Neural Networks has interesting properties that make
them more suitable to cope with spectral variations and model spec-
tral correlations. In this report we present our work on training a deep
convolutional neural network CNN for phoneme classification acoustic
task. CNNs with different configurations are trained and compared.
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1 Introduction

Neural networks have always been an attractive area of research since 1960.
The attempt at simulating the human brain has always been intriguing. Since
the first perceptron model, Neural Networks have evolved in many ways, in
which layers of perceptrons grew wider and deeper. However, until recently, it
was only possible to train shallow networks, because of the vanishing gradient
problem. The vanishing gradient is a phenomena where the error informa-
tion starts to decay when propagated through many layers, and therefore the
learning process is no longer doable. A remedy was made by Hinton[7], in
which the network is trained a layer at a time, instead of trying to train all
layers at once.

Deep Learning is the new trend in Machine Learning field. Recently, there
has been many applications that uses Deep Learning. Training these deep
networks is very expensive computationally, they require heavy computa-
tions on the GPU, and so far, several frameworks that facilitate training
Deep Neural Networks (DNN) and Convolutional Neural Networks (CNN)
—a deep network that uses Convolutional filters— have been developed by
many research labs around the world. CNNs are usually very popular with
the computer vision applications.

Recently, DNNs and CNNs have been applied to the field of speech recogni-
tion with very promising results. CNNs have the ability to reduce spectral
variations and model spectral correlations which exist in signals, therefore
CNNs are a more effective model for speech compared to DNNs [12]. In this
work, we experiment with CNNs and apply them to a small scope of acous-
tic modelling which is phoneme classification, using the TIMIT dataset. We
use the CNN training library, Caffe to train our network. We train on spec-
trograms i.e. images of Fast Fourier Transform applied on the phonemes
acoustic data. We base our work on the architecture described in [12].

2 Related Work

There has been many approaches for speech recognition with Neural Net-
works. The classical approach was always to combine Hidden Markov Models
(HMMs) with NNs, such as [11]. This approach has been very successful and
popular. Recently, there has been attempts to remove the need for HMMs.
[6] used Recurrent Neural Networks (RNNs) with good results for speech
recognition and has yielded promising result. [5] have done similar work
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with RNNs.

[12] uses HMMs in their model, however, we only build a CNN based on
their architecture, and since we do not do speech recognition, there is no
need for an HMM.

There has been attempts to use both DNNs and CNNs in speech recog-
nition, however, DNNs have difficulty modeling transitional variance within
speech signals, which exists due to difference in speaking styles [9]. Various
speaker adaptation techniques are required to reduce this variation. There-
fore, we have preferred to use CNNs for this task, since TIMIT consists of a
wide range of speakers.

3 Method

In the section the approach followed to build the CCN will be described.

3.1 Overall setup

A deep CNN will be trained to give a probability distribution over the
phonemes labels given the acoustic input. The acoustic input will be con-
verted into a sequence of fixed size frames windows, that is converted into
spectrograms. The deep CNN will then generate probability distributions
over the possible phone labels for each spectrogram. The sequence of the
probability distributions will then be used to compute the emission probabil-
ities of the HMM states on a Viterbi decoder that can generate the expected
phones sequence.

In this work, the CCN network ability to predict the correct phone label
given an input spectrogram was tested, and no Viterbi decoder was used.

3.2 Feature representation

As in [5] we have chosen to use the spectrograms as inputs to the CCN.
The acoustic input are split into smaller frames chunks which are then con-
verted into fixed size spectrogram images. Section 4 detail the spectrograms
generation process for this phone recognition task.
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3.3 Network Architecture

As suggested in [12], a CNN network with both convolutional layers and fully
connected layers will be used. Convolutional layers will be used at the first
(bottom) layers of the network, while fully connected layers will be used at
the last (top) layers of the network. The convolutional layers will sometimes
be followed with a pooling layer. Having the convolutional layers at the
bottom of the network helps with the spectral variation, and the fully con-
nected layer are used to discriminate between the different phonemes using
the convoluted-pooled input from the convolution and pooling layers.
Our architecture follows after the famous AlexNet[8], a very successful net-
work used in Computer Vision literature to do object recognition on more
than 1,000 classes. Figure 1 shows the architecture of the best performing
network according to our experiments. As we will see in Section 5.2, we have
tried slightly modified versions of this architecture for different experiment.

3.4 Evaluation

A number of CNN with different number of layers will be trained. The
performance of these networks will be compared using the classification error
rate. Due to the limitation of the computing resources, a relatively small
networks will be trained, also the network will be trained to classify over a
subset of the phonemes.

4 Dataset

The Timit corpus [4] was used for verifying the proposed solution. It con-
tains recordings of 630 speakers from 8 different regions in the united states.
Each speaker read 10 sentences, recorded at 16 KHz frequency. Beside the
audio recordings, the corpus contains time-aligned orthographic, word and
phonetic transcription.

To create the spectrogram images that are used as input to our phone recog-
nition network, the phonetic time alignment information are used to extract
the frames associated with each phoneme. The frames of each phoneme are
then split into 16ms Hanning windows with 15.5 ms overlap. A Fast Fourier
Transform is then applied on the frames to generate a spectrogram, which
are then padded to create a 128 by 128 pixels images. Figures 2 and 3 shows
example spectrograms.
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Figure 1: Best performing network architecture, it follows after AlexNet.
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Figure 2: Spectrogram of phoneme ao

Figure 3: Spectrogram of phoneme sh
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5 Experiments and Results

5.1 Implementation

The Timit corpus contains 6300 wav files corresponding to the 6300 sentences
uttered by the 630 different speakers. The Sndfile from scikits.audiolab
library is used to read the wav files. Using the phones time alignment in-
formation, the frames of each phoneme are extracted and saved as wav files,
resulting a wav for each phoneme. The wav files are then converted into
spectrogram images using a script provided by [3].

The CCN network was built and trained using the NVIDIA DIGITS deep
learning system [2]. DIGITS providesa web based user interface that wraps
the Caffe deep learning framework [1]. The training was done on a rented
Amazon instance that has a GPU with around 1500 cores. The trained model
is then tested using Caffe pycaffe module, since DIGITS provides poor testing
facilities.

5.2 Experiments

The original 61 phonemes in the TIMIT corpus was mapped into 39 phonemes
as suggested in mapping. This mapping is shown in table 1. The 39 phonemes
are then used to both train and evaluate the model.

aa, ao aa
ah, ax, ax-h ah
er, axr er
hh, hv hh
ih, ix ih
l, el l
m, em m
n, en, nx n
ng, eng ng
sh, zh sh
uw, ux uw
pcl, tcl, kcl, bcl, dcl, gcl, h#, pau, epi sil
q -

Table 1: Mapping the 61 original TIMIT phonemes(left) into 39
phonemes(right) as suggested in [10]

We have tried different networks with different data sets (train/validation
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Name Val Split % Phone Count Conv. Layers Setup Fully Con. Setup Accuracy Epochs
EXP1 25 2 (dr1) 96, 256, 384, 384, 256, 256 256, 128, 2 100% 30
EXP2 25 61 (dr1,dr2) 96, 256, 384, 384, 256, 256 256, 128, 61 60% 30
EXP3 25 39 (all) 96, 256, 384, 384, 256, 256 4096, 2048, 39 65% 50

Table 2: Details of different experiments. Columns from left to right:
experiment code-name, percentage of validation split, number of phonemes
used and the regions included, number of nodes in different Convolutional
layers, number of nodes in Fully Connected layers, Validation Accuracy and
number of Epochs of the training.

Experiment Unseen Test Error
EXP2 81%
EXP3 79%

Table 3: Error results on unseen test dataset.

split). As a proof of concept, we trained the network for only two phonemes.
Figure 4 shows the graphs of training error and validation error as well as
accuracy at each epoch for this network. Reaching 100% accuracy after
5 epochs, suggested that our data representation, along with the chosen
network architecture, was in deed capable of separating different classes.
Figure 5 shows a similar graph for our best performing method on all 39
classes.

Table 2 shows a detailed listing of the setup and performance of different
experiments.
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Figure 4: Training error, Validation error and Accuracy for each epoch of
training the AlexNet on two classes.

Figure 5: Training error, Validation error and Accuracy for each epoch of
training the best model on all 39 classes.

6 Discussion and Conclusions

The method showed good potential in separating two phonemes, this was
very beneficial as a proof of concept to show that the model works. However,
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as seen from results in Table 3, our method was unable to generalize with
good performance. However on the validation set, it was able to perform
very well. The reasons behind this difference in performance is still unknown
to us, however we propose some possible explanations and future work.

• The size and complexity of the network. Through all experiments, we
were never able to get our model to overfit the data, this suggests that
our model might not be complex enough. Another explanation is that
the model needs much more epochs to learn.

• It might be the size of the spectrograms used. The size we used is small
and does not capture variations that differentiate the different phone
classes, for instance, Google successfully used words spectrograms.

• The representation of the data, while it was easily separated in the two
phoneme case, the representation might not be separable for the 39
phoneme case. Therefore we might want to experiment with raw sound
waves.

• The amount of data used. Unfortunately, due to the expensiveness of
the training, we were only able to train only on 39 phonemes for all
regions. Most of the literature trains on all 61 phonemes, and tests on
a smaller subset (39 phonemes).
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