&

B,
FKTHS

{? VETENSKAP %’
&9 OCH KONST 9%

Experiments with Deep Neural Networks for
Automatic Speech Recognition - DT2118

Akash Kumar Dhaka
Thomai Stathopoulou

June 7, 2015

DT2118 A. Kumar, T. Stathopoulou

Abstract

For this project we attempt to implement Automatic Speech Recog-
nition (ASR). With the use of implemented tools for the training and
application of Deep Neural Networks, we conduct a series of experi-
ments, while evaluating and commenting on the performance of the
different networks.

1 Introduction

Deep neural networks have become very popular in the field of Machine Learn-
ing. With the computational capabilities increasing more and more every day;,
deep neural networks become more approachable and it is more feasible to
train networks with many layers and/or many nodes per layer.

The subject of this project is to experiment with deep neural networks,
in order to achieve automatic speech recognition. Using a dataset of differ-
ent people uttering numbers, we intend to train neural networks of varying
numbers of layers and nodes in each layer, in order to be able to evaluate and
compare their performances.

2 Method

The concepts of Neural Networks in general and more importantly Deep Neu-
ral Networks, are considered to be known in the scope of this report. However,
follows a description summarizing the basic structure of them.

2.1 Artificial Neural Networks (ANN)

In the field of Machine Learning an ANN is a statistical learning model which
is inspired by the way that a biological neural network (nervous system) pro-
cesses information [I]. It imitates a biological neural network, by simulating
the way that the different neurons are connected with each other intercom-
municating information back and forth.

The ANNs are consisted of a number of nodes (representing the neurons).
These nodes are divided into layers, such as the input layer, the output layer
and one or more hidden layers in between. The nodes of every layer are
connected with all nodes of the next and previous layer and communication
goes both ways. The goal of an ANN is to estimate or approximate functions
that can depend on a large number of inputs and are generally unknown.
Every node contains a weight, which is applied to the data that is fed to this
node. Through the back-forth communication, it is possible to adjust these
weights, based on the correct/incorrect results that the ANN produces.

DT2118 A. Kumar, T. Stathopoulou

Figure 1: A two-layer feedforward artificial neural network

At the end, the output of the output layer, is usually filtered using a
transfer function, so that the result of the ANN is one single value (eg. the
label of the class to which the input data point is assigned).

ANNSs have been very popular in different areas of Artificial Intelligence
and Machine Learning, such as Computer Vision and Automatic Speech
Recognition.

2.2 Deep Neural Networks

With the recent advances in deep learning field, and the emergence of GPU,
deep learning approaches have produced significant improvements over previ-
ous benchmarks in different fields. Deep Learning is about learning multiple
hierarchies of representations and abstractions. The difference here is that
the features are not hand crafted as in the old approach of pattern recognition
and classification, there is an additional step of unsupervised learning before
the training which gives better feature representations. Another important
difference between the deep neural networks and traditional neural networks
is that they use the ReLu function in place of the sigmoid function, and this
helps in avoiding the problem of vanishing gradients in the back propagation
algorithm.

DT2118 A. Kumar, T. Stathopoulou

Table 1: The phonemes encountered in the TIDIGITS dataset and their labels

| Phoneme | Label | Phon.(cont.) | Label(cont.) |

ah 0 ow 11
ao 1 r 12
ay 2 S 13
eh 3 sil 14
ey 4 sp 15

f 5 t 16
hh 6 th 17
ih 7 uw 18
iy 8 v 19
k 9 A4 20
n 10 Z 21

3 Data

The data that are going to be used are taken from a large set called TIDIG-
ITS [4]. This dataset contains recordings of different people (adults and
children) uttering numbers. More specifically the dataset contains 326 speak-
ers (111 men, 114 women, 50 boys and 51 girls). Every speaker pronounces
77 digit sequences (recordings). Additionally, the recordings of each speaker
group is divided into training and testing subset.

The recordings are then split into phonemes. Table[I]shows all the possible
phonemes found in the dataset, as well as their assigned labels (an integer
number) for the purposes of the experiments.

3.1 Data Transformation and Feature Extraction

The TIDIGITS database is provided in the form of multiple .wav files. Ev-
ery .wav corresponds to one utterance. Furthermore, after applying some
preprocessing functions from the Hidden Markov Model Toolkit (HTK) [6],
we are provided with a new file (.mfc), which displays the contents of all
the recordings (shown in Figure . This file basically expresses when ex-
actly each phonemes starts and ends within a recording (time measured in
milliseconds).

Using the .mfc files it is possible to produce MFCC features for the dif-
ferent phonemes. Depending on the length of the frames extracted from the
recordings, varying numbers of features are produced for every phoneme. For
example for a frame length of 10ms, for the .mfc of Figure [2| we will get 17
features for the “sil” phoneme, 7 features for “hh”, 8 features for “w” etc.
These features are written in a text file, where every line corresponds to one
frame and contains the feature elements followed by the label assigned to the
phoneme.

DT2118 A. Kumar, T. Stathopoulou

The final step is to convert the text file into a format that is accepted by
PDNN. That is, either a .pfile or a pickle file. With the use of a simple
Python script, the text files are converted into pickle files.

For the experiments conducted for this project, only the utterances pro-
duced by men and women were used. The training set contains ~1,500,000
utterances (of which 70% is used for the actual training and 30% is used for
validating). For the testing phase, even though the original dataset contained
the same amount of utterances as the training set, it seemed for appropriate
to use only 30% of that data, resulting in ~500,000 utterances. This was
mostly decided because of the computational complexity, which would result
in much slower experiments.

“path/to/recording/recording.wav”
0 1700000 sil
1700000 2400000 hh
2400000 3200000 w
3200000 4500000 ah
4500000 4800000 n
4800000 4800000 sp
4800000 5700000 s
5700000 6400000 eh
6400000 7800000 v
7800000 8700000 ah
8700000 9100000 n

Figure 2: Example of the contents of a recording

4 Experiments

For the training and testing of the deep neural networks, we used two imple-
mented toolkits, Kaldi and PDNN [5]. These are toolkits implemented for
use in speech recognition tasks (Kaldi) and deep neural networks in partic-
ular (PDNN). We conducted a series of experiments by varying the network
parameters such as number of nodes in the hidden layers, number of hidden
layers and learning rate.

We used the DNN implementation for neural networks in the aforemen-
tioned PDNN library. The library is written in python, currently in active
development and built on top of Theano [2] [3]. Since these libraries are still
in development there have been some minor scripting issues in some of the
shell files, which were confronted individually.

The type of features used for the experiments is MFCC including the zero-
th coefficient. Therefore all the networks that were trained had a first layer

DT2118 A. Kumar, T. Stathopoulou

with 13 nodes and a final layer of 22 nodes (the number of phonemes).

Finally after training and evaluating the performance of several networks,
using the data produced as described in Section [3.1] the data was then nor-
malized in order to be used for the training of new networks.

When training each network, the data is assume to be independent and
identically distributed based on a Gaussian distribution A/(0,1). Therefore,
in order to produce the normalized dataset, we calculated the mean and
standard deviation of all input vectors. The normalized vectors are calculated:

Xi— i

g;

X; =

(1)

5 Results

Figures|[3] and [0, show the training and validation error over 100 epochs of
the networks trained with non-normalized and normalized data. The number
of hidden layers used was 2, 3 and 4 with 128, 256 and 512 nodes per layer. A
learning rate of 0.3 was used for most of the networks, while for the normalized
data there were some networks that were trained with a learning rate of 0.2.

All networks display a similar behavior with very close to each other er-
rors. All training errors are decreasing throughout the entire training process.
However, we observed from the validation and testing errors (Table [2)) that
the phenomenon of over-fitting is very prominent in these experiments.

When using the normalized data, one important observation is that the
graphs for the training and validation errors a smoother than the ones for non-
normalized data, especially for the validation errors. However, this makes the
over-fitting much more visible. For example, the network 512 x 512 x 512 for
normalized data produces the lowest training error of 15%. At the same time
it also produces the highest validation error of 35% and the over-fitting for
this network is the most intense. Finally the testing error of this network is
41.61%, which is quite far from the lowest error 41.06%, which was produced
by the 512 x 512 network.

The normalized data have in general a better performance, which can
be verified by Table 2] Just the use of the normalized data improves the
performance 2 — 7%.

6 Conclusions & Discussion

As already mentioned in Section [J], the use of normalized data improves the
performance of the networks. However, the general performance of the net-
works was very similar for all different trainings and no particular patterns
emerged, concerning e.g. number of layers or number of nodes per layer.

DT2118 A. Kumar, T. Stathopoulou
20 Training error for non-normalized data
T T :
— 128_128_128_128_0.3_100
— 128_128_128_0.3_100
— 256_256_0.3_100
—— 512_512_0.3_100
| — 256_256_256_256_0.3_100
» h - n ' ' : ' - H ' 128_128_0.3_100 i
— 256_256_256_0.3_100
‘ I ; I — 512_512_512_0.3_100
5 \
g \ \
2 301\ ,, 1
= ~
£ NN
E— _—
251 ——— —— 4
20 ; H ; ;
0 20 40 60 80 100
Epochs
Figure 3: Training error over 100 epochs of the non-normalized data
35 Training error for normalized data
— 512_512_0.3_100_norm
— 512_512_512_0.3_100_norm
— 256_256_256_256_0.2_100_norm
— 128_128_128_128_0.3_100_norm
— 128_128_128_0.2_100_norm
* 256_256_256_0.2_100_norm
— 256_256_256_0.3_100_horm
— 128_128_0.3_100_norm
N — 128_128_128_0.3_100_norm
E — 256_256_0.3_100_norm
2251 1
<
g
£
15 ; ; ; ;
0 20 40 60 80 100

Epochs

Figure 4: Training error over 100 epochs of the normalized data

DT2118 A. Kumar, T. Stathopoulou

42 Validation error for non-normalized data
T T

:

— 128 128_128_128_0.3_100

— 128 128.128 0.3_100

AT | 256_256_0.3_100

~—— 512.512_0.3_100

— 256_256_256_256_0.3_100
128 128_0.3_100

40 -} -

— 256_256_256_0.3_100
— 512.512_512_0.3_100

§39

3

c

=]

©

338

g

371

36

35
0

Epochs

Figure 5: Validation error over 100 epochs of the non-normalized data

6 Validation error for normalized data
T T

:

— 512_512_0.3_100_norm

— 512_512_512_0.3_100_norm

— 256_256_256_256_0.2_100_norm

3B e - ' o - - | — 128_128_128_128_0.3_100_norm [

— 128_128_128_0.2_100_norm
256_256_256_0.2_100_norm

sl | — 256_256_256_0.3_100_norm

— 128_128_0.3_100_norm
5 — 128_128_128_0.3_100_norm
g — 256_256_0.3_100_norm
533

B

=2

S

32

31f

30 L L L L
0

Epochs

Figure 6: Validation error over 100 epochs of the normalized data

DT2118 A. Kumar, T. Stathopoulou

Table 2: Testing errors of different networks

Layers ‘ Nodes ‘ Learning Rate ‘ Normalized ‘ Error ‘

2 256 0.3 No 44.49%
2 512 0.3 No 45.74%
3 128 0.3 No 47.97%
3 256 0.3 No 45.87%
3 512 0.3 No 46.81%
4 128 0.3 No 46.64%
4 256 0.3 No 48.16%
2 128 0.3 Yes 41.17%
2 256 0.3 Yes 41.28%
2 512 0.3 Yes 41.06%
3 128 0.3 Yes 42.69%
3 267 0.3 Yes 42.49%
3 512 0.3 Yes 41.61%
4 128 0.3 Yes 42.51%
3 128 0.2 Yes 41.4%
3 256 0.2 Yes 41.87%
4 256 0.2 Yes 42.06%

It is our belief that, in order to be able to see significant changes, one
needs to train much larger networks (6 layers with 2048 nodes is one exam-
ple). However, due to time and computational power constraints, it was not
possible to train networks of this size in the scope of the project.

There are many different approaches to this task, some of which are men-
tioned in the following paragraphs.

Training of large networks As already mentioned it is important, given
the necessary resources, to train very large networks, in order to see improve-
ment, or at least to be able to draw conclusions about this task. Furthermore
these network need not have the same number of nodes in all layers, but
one can experiment with different combinations. This is basically due to the
complex nature and size of the data.

Detect over-fitting It is already commented in Section [5] that there is
very intense over-fitting of the networks. Even though the exact number of
epochs, after which the networks start to over-fit, has not been determined
and is probably affected by the specifications and size of the network, it can
be possible, to detect the moment that the networks start to over-fit (by
observing the validation error) and stop the training, in order to keep the
best network possible.

DT2118 A. Kumar, T. Stathopoulou

Preprocess data The observation that the use of normalized data improves
the performance of the network is an indication that the form of the used data
is always important in such experiments. There are many different features
that can be used, as well as different methods of pre-processing the data.
The features and normalization used for this project is just an indication and
there are many more paths to explored yet.

Convolutional networks Finally it is very interesting to try and com-
plete this classification using convolutional networks with varying number of
convolutional layers of different filters.

References

[1] Various Authors. Artificial neural network. http://en.wikipedia.org/
wiki/Artificial_neural_network. [Online; accessed 7-June-2015].

[2] Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, lan J.
Goodfellow, Arnaud Bergeron, Nicolas Bouchard, and Yoshua Bengio.
Theano: new features and speed improvements. Deep Learning and Un-
supervised Feature Learning NIPS 2012 Workshop, 2012.

[3] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Raz-
van Pascanu, Guillaume Desjardins, Joseph Turian, David Warde-Farley,
and Yoshua Bengio. Theano: a CPU and GPU math expression com-
piler. In Proceedings of the Python for Scientific Computing Conference
(SciPy), June 2010. Oral Presentation.

[4] R. Gary Leonard and George Doddington. Tidigits 1dc93s10. Philadelphia:
Linguistic Data Consortium, 1993.

[5] Yajie Miao. Kaldi+pdnn: Building dnn-based ASR systems with kaldi
and PDNN. CoRR, abs/1401.6984, 2014.

[6] S.J. Young and Sj Young. The htk hidden markov model toolkit: Design
and philosophy. FEntropic Cambridge Research Laboratory, Ltd, 2:2-44,
1994.

http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/Artificial_neural_network

	Introduction
	Method
	Artificial Neural Networks (ANN)
	Deep Neural Networks

	Data
	Data Transformation and Feature Extraction

	Experiments
	Results
	Conclusions & Discussion

