
1

DT2118 Project: Beamforming
Alejandro Marzinotto (almc@kth.se) 900102-6138

I. INTRODUCTION

Beamforming is a signal processing technique that relies
on the superposition of waves caused by delayed emis-
sion/reception, it can be used in two different ways.

1) The first scenario (forward beamforming) involves fo-
cusing the energy that several spherical emitters produce
by controlling the phase of the wave. The superposition
principle will cause certain parts of space to show
higher power because the waves of different emitters
have constructive interference in those points, whereas
it will cause other parts of space to show lower power
because the waves of different emitters have destructive
interference in those points.

2) The second scenario (backward beamforming) involves
figuring out the direction from where the wave is being
emitted by using the phase shift of such wave at several
different receivers. By knowing the velocity of propaga-
tion of the wave and using an arrangement of properly
spaced receivers, it is possible to retrieve the direction
from where the wave was emitted.

In this report we present simulations of the first and second
scenarios. In other words we simulate how a wifi access point
would de-phase the signals sent to their antennas in order to
focus the energy beam in certain directions, and we simulate an
array of evenly spaced microphones to obtain the approximate
position of an object that emits sound waves while moving.

We present the equations that model such simulations
and the reasoning behind the beamforming techniques imple-
mented.

There exist more complex and robust backward beamform-
ing techniques for commercial devices such as the Microsoft
Kinect. This device has an array of 4 microphones which
in conjunction with their proprietary software is capable of
determining with high accuracy the direction from which a
sound is coming (in a 2D plane). This sound directional
sensibility can be used to further separate the speech of one
person from another in a robust manner if they are standing
side by side in front of the Kinect.

In this report we present a hardware modification to the
Kinect basic infrastructure that would allow 3D localization
using 2 arrays of sensors placed in planes perpendicular to
each other. We also show how a third perpendicular array of
sensors could improve the detection accuracy even further.

II. FORWARD BEAMFORMING

In the forward beamforming algorithm, we have a certain
number of emitters (labelled s) each of which propagates a
spherical wave that has the following mathematical equation.

Zs = A
eik
√

(X−s.x)2+(Y−s.y)2e−i(wt+s.φ)√
(X − s.x)2 + (Y − s.y)2

(1)

We define the parameters v, f , λ, A, k, and ω that stand
respectively for the linear velocity of propagation of the wave,
the frequency of the wave in Hz, the wavelength in meters, the
amplitude of the wave in meters, the wave constant (inversely
proportional to the wavelength), and the angular speed of the
wave.

1 v = 344;
2 f = 10;
3 lambda = v/f;
4 A = 1.0;
5 k = 2*pi/lambda;
6 w = k*v;

We also define the position of the emitters that are go-
ing to be producing the spherical waves, these are labelled
s1, s2, s3, s4 for the simulation presented below and they are
located at a distance 0.5λ between each other.

1 s1.pos = [0,-0.75*lambda,0];
2 s2.pos = [0,-0.25*lambda,0];
3 s3.pos = [0,+0.25*lambda,0];
4 s4.pos = [0,+0.75*lambda,0];

It is also possible to set the distances between the emitters
in such a way that they are not evenly spaced. This produces
slightly different interference patters as we will show below.

1 s1.pos = [0,-1.0*lambda,0];
2 s2.pos = [0,-0.5*lambda,0];
3 s3.pos = [0,+0.5*lambda,0];
4 s4.pos = [0,+1.0*lambda,0];

We dephase the signals 20% of 2π for each successive
emitter. This parameter was tuned manually and different
results can be achieved for different amounts of de-phase.
Nonetheless, to observe a greater variety of interference pat-
ters, we introduce additional de-phase between sensors as the
simulation progresses.

1 s1.phs = 0.0*2*pi;
2 s2.phs = 0.2*2*pi;
3 s3.phs = 0.4*2*pi;
4 s4.phs = 0.6*2*pi;

The actual calculation and update of the waves and their
interference pattern takes place inside a for loop over the grid
of the x/y plane. We sum and normalize the waves of the
last 2 iterations to get a smoother looking wave of the correct
amplitude.

1 [X, Y] = meshgrid(linspace(-Lx/2, Lx/2, M),
2 linspace(-Ly/2, Ly/2, M));
3 T = 0.5;
4 nt = 100;
5 time = linspace(0, T, nt);
6 phase = linspace(0, 2*pi, nt);
7 for iter = 1:(nt-1)



2

Figure 1. Forward beamforming with 2 emitters evenly spaced.

8 t = time(iter);
9 Z1 = A*exp(1i*k*sqrt((X-s1.pos(1)).ˆ2

10 +(Y-s1.pos(2)).ˆ2))* ...
11 exp(-1i*(w*t + s1.phs + 0*phase(iter)))
12 ./sqrt((X-s1.pos(1)).ˆ2+(Y-s1.pos(2)).ˆ2);
13

14 Z2 = A*exp(1i*k*sqrt((X-s2.pos(1)).ˆ2
15 +(Y-s2.pos(2)).ˆ2))* ...
16 exp(-1i*(w*t + s2.phs + 0.25*phase(iter)))
17 ./sqrt((X-s2.pos(1)).ˆ2+(Y-s2.pos(2)).ˆ2);
18

19 Z3 = A*exp(1i*k*sqrt((X-s3.pos(1)).ˆ2
20 +(Y-s3.pos(2)).ˆ2))* ...
21 exp(-1i*(w*t + s3.phs + 0.5*phase(iter)))
22 ./sqrt((X-s3.pos(1)).ˆ2+(Y-s3.pos(2)).ˆ2);
23

24 Z4 = A*exp(1i*k*sqrt((X-s4.pos(1)).ˆ2
25 +(Y-s4.pos(2)).ˆ2))* ...
26 exp(-1i*(w*t + s4.phs + 1*phase(iter)))
27 ./sqrt((X-s4.pos(1)).ˆ2+(Y-s4.pos(2)).ˆ2);
28

29

30 average_Z = average_Z + real(Z1) + real(Z2)
31 + real(Z3) + real(Z4);
32 average_Z = average_Z / norm(average_Z);
33 end

Briefly presenting some of the results obtained in simulation
for the interference patters formed using different arrays with
different parameters we have the following figures: Fig. 1,
Fig. 2, Fig. 3, Fig. 4, Fig. 5.

As one may see from the experimental results, it is possible
to create a wide variety of shapes: stars with 4 corners, stars
with 5 corners, etc. It is also possible to focus the energy in
2 different locations (in front and behind, or side by side).
We point out that all these experiments were carried out using
a linear array of 4 emitters and more complex shapes can be
created by using a bi-dimensional array of sensors, for example
in the figures: Fig. 6 and Fig. 7.

As one can see the directionality of the beams is increased
by adding one more dimension to the grid of sensors and this
idea could carry over into 3 dimensional arrays of sensors.

Figure 2. Forward beamforming with 3 emitters unevenly spaced.

Figure 3. Forward beamforming with 4 emitters evenly spaced.

Figure 4. Forward beamforming with 4 emitters unevenly spaced.



3

Figure 5. Forward beamforming with 4 emitters unevenly spaced with 4
times more frequency (shorter wavelength).

Figure 6. Forward beamforming with 4x2 emitters unevenly spaced with 2
columns spaced 1λ.

Figure 7. Forward beamforming with 4x2 emitters unevenly spaced with 2
columns spaced 2λ.

III. BACKWARD BEAMFORMING

In the backward beamforming algorithm, we have a certain
number of sensors each of which receives a spherical wave that
has the same mathematical equation as in (1) and is emitted
by an object that has unknown position and velocity.

Using the delay in reception of the wave at different sensors
we can triangulate the source of the sound / wave in a an
approximate fashion.

For greater simulation simplicity, we don’t model the inten-
sity of the wave at each point in space for the calculation of
the backward beamforming. Instead we model only the peak
of the wave as a circle of increasing radius.

This means that we throw away information about the
intensity of the wave which is not reliable to be used in the
calculation of the backward beamforming problem.

The reason for this is because the wave attenuation at
a given sensor can be due to many factors: distance be-
tween emitter/sensor, environmental disturbances, reflections,
etc. For this reason we don’t use the intensity of the beam
but rather the time difference of arrival (delay) between the
reception of the wave at different sensors.

The backward beamforming algorithm described below is
custom made to solve the problem in a computationally
efficient way rather than providing the best estimate of the
angle to the emitter / position of the emitter.

Broadly speaking the algorithm works as follows; we as-
sume that we know the wave propagation speed in the medium
that is being considered and that such speed is approximately
constant. We take pairs of sensors and we study the delay in
the wave reception between them.

Knowing how fast the wave travels we can establish the
following border conditions:

1) if the emitter is aligned with the axis defined by the
2 sensors the delay in the reception of the signal will
be maximal and will correspond to max delay1−2 =
norm(s1.pos−s2.pos, 2)/v. Where v is the linear prop-
agation velocity of the wave and the norm between the
positions of the sensors is simply the euclidean distance.
The delay is calculated as the amount of time it would
take the wave to travel from one sensor to the other if it
was produced by an emitter aligned to the sensors (worst
case scenario, or maximum delay).

2) if the emitter is equidistant to both sensors, i.e. if it
lies in the line that is perpendicular to the axis of the 2
sensors and crosses the axis exactly at the point between
the sensors. Then, the expected delay in the reception
of the wave is zero seconds. One can use these two
border conditions to establish a linear or non-linear
interpolation scheme which approximates the direction
from the incoming wave for all other delays that are
between 0 seconds and max delay1−2 seconds.

The sensor that first receives the wave will determine if the
axis is positive or negative yielding a coverage radius that goes
between 0 to π/2 and between 0 to −π/2 (right hand side in
Cartesian coordinate space). The angles on the second and
third quadrants (negative cosine) are impossible to distinguish
between the symmetric angles found in the first and fourth



4

quadrants. This means that an emitter located at 0 degrees
will produce the same delays as one located at 180 degrees.

To solve this problem robustly one would need another
array of sensors laying on an axis that is perpendicular to the
axis defined by the first set of sensors. Given our case study
where the first set of sensors is located along the Y axis, this
second axis corresponds to the X axis and it would be able
to distinguish between symmetric beams incoming from left
and right, i.e. angles α, β such that sin(α) = sin(β), e.g. 0
degrees and 180 degrees.

In these experiments we use the same definitions as be-
fore for the wave parameters, however, now the elements
s1, s2, s3, s4 are no longer wave emitters but sensors and we
only deal with the case where they are uniformly distributed.

1 s1.pos = [0,-0.75*lambda,0];
2 s2.pos = [0,-0.25*lambda,0];
3 s3.pos = [0,+0.25*lambda,0];
4 s4.pos = [0,+0.75*lambda,0];

Arrangements where the distance between sensors is large
enough allow us to create multiple directional vectors for the
incoming beam that when intersected give an approximate x, y
position of the emitter.

The velocity of the wave is of critical importance for the
calculation of the maximum delay expected and therefore
necessary for our interpolation.

1 v = 344;
2 f = 10;
3 lambda = v/f;
4 A = 1.0;
5 k = 2*pi/lambda;
6 w = k*v;

The phases of each sensor are now calculated inside the
main simulation loop unlike before where they were set
beforehand to be 20% higher on each new sensor.

In the following code we update the position of the emitter
using a circular trajectory, we then calculate how long it would
take for the wave to reach each of the emitters based on the
distance and the assumption that the wave speed is constant.
We then calculate the delays of each sensor with respect to
the first sensor (s1).

This yields some positive and some negative delays depend-
ing on which was the actual sensor that first received the wave.
To account for this fact we obtain the minimum of all delays
and we subtract it from the set of 4 delays in order to normalize
them (make them ≥ 0). Lastly, for each pair of sensors we
calculate the proportion of the observed delay with respect
to the maximum delay expected for the wave speed v, i.e.
max delay1−2 = norm(s1.pos− s2.pos, 2)/v.

1 [X, Y]=meshgrid(linspace(-Lx/2, Lx/2, M),
2 linspace(-Ly/2, Ly/2, M));
3 T = 0.5;
4 nt = 100;
5 time = linspace(0, T, nt);
6

7 for iter = 1:(nt-1)
8 t = time(iter);
9 em.pos = [500*cos(pi/4*t+pi/2),

10 300*sin(pi/4*t+pi/2), 0];

11

12 scatter3(s1.pos(1), s1.pos(2), s1.pos(3),’blue’);
13 scatter3(s2.pos(1), s2.pos(2), s2.pos(3),’blue’);
14 scatter3(s3.pos(1), s3.pos(2), s3.pos(3),’blue’);
15 scatter3(s4.pos(1), s4.pos(2), s4.pos(3),’blue’);
16 scatter3(em.pos(1), em.pos(2), em.pos(3),’red’);
17

18 s1.d = norm(s1.pos - em.pos, 2);
19 s2.d = norm(s2.pos - em.pos, 2);
20 s3.d = norm(s3.pos - em.pos, 2);
21 s4.d = norm(s4.pos - em.pos, 2);
22

23 power = 0.1;
24 s1.t = (s1.d / v) + 1.0*wgn(1,1,power);
25 s2.t = (s2.d / v) + 0.0*wgn(1,1,power);
26 s3.t = (s3.d / v) + 0.0*wgn(1,1,power);
27 s4.t = (s4.d / v) + 0.0*wgn(1,1,power);
28

29 s1.delay = 0.0;
30 s2.delay = s2.t - s1.t;
31 s3.delay = s3.t - s1.t;
32 s4.delay = s4.t - s1.t;
33

34 first_delay = min([s1.delay, s2.delay,...
35 s3.delay, s4.delay]);
36

37 s1.delay = s1.delay - first_delay;
38 s2.delay = s2.delay - first_delay;
39 s3.delay = s3.delay - first_delay;
40 s4.delay = s4.delay - first_delay;
41

42 length = 200;
43 % sensor 1/2 pair
44 max_delay_1_2 = norm(s1.pos - s2.pos, 2) / v;
45 rel_delay_1_2 = max([s1.delay, s2.delay])
46 - min([s1.delay, s2.delay]);
47 proportion_1_2 = pi/2* rel_delay_1_2 / ...
48 max_delay_1_2;
49 if (s2.delay > s1.delay)
50 proportion_1_2 = -1*proportion_1_2;
51 end
52 vector_1_2_o = (s1.pos + s2.pos) / 2;
53 vector_1_2_v = vector_1_2_o + length * ...
54 [cos(proportion_1_2),sin(proportion_1_2), 0];
55

56 arrowStarts = [vector_1_2_o;vector_2_3_o;
57 vector_3_4_o];
58 arrowEnds = [vector_1_2_v;vector_2_3_v;
59 vector_3_4_v];
60 arrow(arrowStarts,arrowEnds);
61 end

Using the combined result for several pairs of sensors and
given that they are appropriately distanced from each other. It’s
possible to project the directionality vectors obtained through
beamforming and get an approximate distance to the emitter.
This method of finding the x, y position of the emitter with
respect to the array of sensors becomes unreliable if the
sensors are placed too close together because they would yield
almost parallel directionality vectors.

As one may see from the experimental results the direc-
tionality of the beam works accurately for small angles and
gets worse as we get closer to 45 degrees, It regains its high
accuracy for angles close to 90 degrees as expected. This could
be because we are using a linear interpolation to solve our
problem when in reality the function that governs the reception
delay of the wave’s physical propagation is non-linear.

We also notice that the estimation of the x, y position of the
emitter (green star) is always closer than in reality (red circle).
We have tried for different distance between the sensors (blue
circles) but the constant overestimation of the closeness of the



5

Figure 8. Backward beamforming with 4 sensors placed at large distance
between each other (8λ) with the emitter at 0 degrees (good accuracy).

Figure 9. Backward beamforming with 4 sensors placed at short distance
between each other (0.5λ) with the emitter at 0 degrees (good accuracy).

emitter is still there. For the results refer to the figures: Fig. 8,
Fig. 9, Fig. 10, Fig. 11.

When it comes to how the error in the absolute distance
between the estimated point and the real point evolve for
different angles of the emitter with respect to the array of
sensors we have the plot in Fig. 12.

When it comes to how the error in the angle between the
estimated direction and the real direction evolve for different
angles of the emitter with respect to the array of sensors we
have the plot in Fig. 13.

IV. KINECT EVALUATION

In this last section we review the beamforming algorithm
that comes with the Kinect. We try to dig into the source code
of the platform to understand how it works, unfortunately the
results were not very promising as they have a proprietary pre-
compiled function that retrieves the angle without showing the
developer how.

Figure 10. Backward beamforming with 4 sensors placed at short distance
between each other (0.5λ) with the emitter at 45 degrees (bad accuracy).

Figure 11. Backward beamforming with 4 sensors placed at short distance
between each other (0.5λ) with the emitter at 90 degrees (good accuracy).
Notice that even though the error appears big it’s only 8 meters in x direction
from a starting position of x = 500 meters

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
180

190

200

210

220

230

240

250

260

270

real angle

di
st

an
ce

er
ro

r

Figure 12. Distance error evolution for different angles of the emitter.



6

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

real angle

an
gl

e
er

ro
r

Figure 13. Angle error evolution for different angles of the emitter.

Figure 14. Kinect diagram showing in purple the microphone array (4 in
total).

Some of the data relevant about the Kinect is that it has a
microphone array that captures audio at 24-bit resolution. The
microphones are placed unevenly across the device as shown
by the purple devices in Fig. 14.

The kinect microphone array of sensors in conjunction with
the Microsoft developer kit for Kinect allows the following
tasks:

1) High-quality audio capture.
2) Focus on audio coming from a particular direction with

beamforming.
3) Identification of the direction of audio sources.
4) Improved speech recognition as a result of audio capture

and beamforming.
5) Raw voice data access.
By studying the source code provided in the examples

we have reached the following scripts: code1.cpp, code2.cpp,
code3.cpp and code4.cpp. Located inside the “code” directory
of the report folder hierarchy. These code snippets show
sections that are relevant for the beamforming and audio
extraction done by the Kinect.

Importantly one may notice the following functions from
code1.cpp:
m_pNuiAudioSource->GetBeam(&beamAngle);
m_pNuiAudioSource->GetPosition(&sourceAngle,&sourceConfidence);
// Convert angles to degrees and set values in audio panel
m_pAudioPanel->SetBeam(static_cast<float>

((180.0 * beamAngle) / M_PI));
m_pAudioPanel->SetSoundSource(static_cast<float>

((180.0 * sourceAngle) /
M_PI), static_cast<float>(sourceConfidence));

that take care of performing the beam angle extraction along

Figure 15. Kinect configuration for 2 dimensional beam direction recogni-
tion.

Figure 16. Kinect configuration for 3 dimensional beam direction recogni-
tion.

with the confidence. The algorithm of the Kinect does use the
strength of the signal received unlike our implementation of
beamforming in simulation.

The extraction of data from the Kinect is done through an
audio re-sample as shown in code3.cpp.
DWORD bytesAvailable = framesAvailable * _MixFrameSize;
// Process input to resampler
hr = ProcessResamplerInput(pData, bytesAvailable, flags);
if (SUCCEEDED(hr))
{
DWORD bytesWritten;
// Process output from resampler
hr = ProcessResamplerOutput(&bytesWritten);
if (SUCCEEDED(hr))
{

// Audio capture was successful,
// so bump the capture buffer pointer.
_BytesCaptured += bytesWritten;

}
}

The standard configuration of the Kinect that we used to
run the sample code is as shown in Fig. 15.

In order to use Kinects to get the beam direction in 3
dimensions it’s needed to put them perpendicular to one
another as shown in Fig. 16.

This configuration will yield, using the demonstration soft-
ware, 2 angles: one for the azimuth and another for the eleva-
tion (also called altitude). Using simple math these angles can
be translated into other representations such as the Cartesian
one. For the meaning of these angles refer to Fig. 17.

Lastly, one may be interested also in the distance to the
sensor for which one can use the configuration of Fig. 18.



7

Figure 17. Azimuth and Elevation angle representation.

Figure 18. Kinect configuration for 3 dimensional beam direction recogni-
tion (distance to sensor and symmetric angle recognition).

This last configuration would enable not only an approximate
distance to the sensor (or at least more reliable than with
the method explained earlier), but also would enable the
recognition in 3D to work also for angles which are behind
the working area of the first 2 Kinects, i.e. it would be able
to distinguish between symmetric angles with respect to the
plane perpendicular to the third Kinect.

The visualization of each Kinect’s extracted angles (azimuth
and altitude) for the case of Fig. 16 are presented below in
Fig. 19 and Fig. 20.

V. CONCLUSIONS

As concluding remarks we have shown examples of forward
and backward algorithms for beamforming that enable us
to: in first instance, direct our energy towards the desired
direction using de-phased emitters; in second instance, retrieve
the location of a certain ‘speaker’ and possibly to isolate it’s
speech from the background noise.

Beamforming techniques such as the ones presented here
are not the state of the art, however they are simple enough

Figure 19. azimuth angle for the horizontal Kinect.

Figure 20. elevation angle for the vertical Kinect.

to understand the concept and represent a valuable testing
framework for different applications. A successful integration
of beamforming techniques using audio with visual RGBD
data from the Kinect could yield interesting improvements
when it comes to speaker localization and background noise
reduction.


