
KTH, Systems, Control and Robotics
Speech and Speaker Recognition (DT2118)

Phonological rules for forced alignment

Submitted by

Vincent Trichon 920513-2633

June 9, 2015

Abstract

We study how phonological rules can be added to the WaveSurfer ASR plugin
in order to improve the phonetic match on a forced alignment task. We
implement a general system to apply optional rules on each word separately,
and test it with a few selected rules against some sentences from the TIMIT
corpus.

1 Introduction

In automatic speech recognition, the usual task is, given a recording of some
spoken text, to reconstruct that unknown text. Forced alignment is a differ-
ent task: now both the recording and the transcription are given, and the
goal is to align them, that is to find the timestamps at which each of the
phonemes in the text are uttered.

What is the point in recognizing a text that is already known ? This
is actually important in many applications. In particular, it is used to con-
struct data in order to train recognition models such as models based on
neural networks. It is possible to construct train data by hand, but manual
alignment is time-consuming and thus costly, and potentially error-prone,
so that it is feasible only for relatively small corpora. For a large corpus
it is much more efficient to use forced alignment (and possibly hand-check
it afterwards). Such a method was used for instance for the TIMIT corpus
[1, 5].

Forced alignment seems a much easier task than recognition of an un-
known text. Indeed, the search space is largely reduced since we know the
transcription. However, some difficulties arise. One of them is that the ac-
tual phonemes uttered may differ from the standard prononciation obtained
from dictionaries. There are variations among speakers, due to regional vari-
ants, and even the same speaker may use different pronunciations for the
same word, for instance by dropping or altering some phonemes in a more
casual speech. Also, the pronunctiation of a word may be modified by the
adjacent words. To take this into account, one possibility would be to store
all pronunciation variants of each word in the dictionary, but this requires a
lot of work and is quite rigid. A more interesting possibility is to use phono-
logical rules, that express how some phonemes in a certain context can be
transformed.

Our goal is to setup a forced alignment procedure that makes use of
phonological rules, and to test it.

2 Method

We use the WaveSurfer ASR plugin [3], which in turn uses the Julius ASR
engine [8]. This plugin currently has a forced alignment function, but without
the use of phonological rules.

We first have to collect a few phonological rules for American English,
then to implement a modification of the grammar construction routine in the
WaveSurfer ASR plugin to include variations according to those rules.

2

To test the modified plugin, we need to run it on data that is already
aligned so that we can compare its results with the provided alignment.

3 Data

3.1 Phonetic transcription

The WaveSurfer ASR plugin uses the open-source American English pro-
nunciation dictionary compiled at Carnegie Mellon University [7]. This dic-
tionary uses Arpabet [6] for phonetic transcription. We extracted from the
dictionary file plugins/asr/English/full.dic the list of phoneme codes
actually used. There are 39 of them, as well as two codes for silence SIL

and short pause SP. The list is presented in table 1, where most example
words are taken from [6, 7], and International Phonetic Alphabet symbols
are typeset using TIPA [2].

In the transcriptions provided with the TIMIT corpus [1], the codes for
silences are different, see table 2, and additional phonemes are used, see
table 3. In particular, occlusives (B, D, G, P, T, K) are separated into two
parts, the closure (BCL, DCL, GCL, PCL, TCL, KCL) and the release (B,
D, G, P, T, K).

Some of these additional phonemes are of particular interest to us, as
they are allophones, the use of which is optional (it may be dependent on
the speaker, the speaking rate, the phonemic context, etc.). They are not
used in the dictionaries (including the dictionary provided with TIMIT), but
they can be produced by phonological rules.

3.2 Phonological rules

We found a list of some phonological rules used in American English on the
web site of the Florida Linguistic Association [9], and other rules in [4]. In
both cases, the rules are given using the International Phonetic Alphabet, so
we need to convert them into extended Arpabet.

Another problem is that most of the rules require information that is
not available in the dictionary of the WaveSurfer ASR plugin: whether a
vowel is stress or unstress, syllabic boundaries, etc. We chose to ignore this
information, allowing the rule to be applied in more situations than it should
be.

Here is a selection of transcribed rules. The syntax is the following:

〈pattern 〉 −→ 〈replacement 〉 [: 〈left context 〉 〈right context 〉]

3

Arpabet code IPA example word transcription
AA A father F AA DH ER

AE æ at AE T

AH 2 hut HH AH T

AO O ought AO T

AW aU cow K AW

AY aI hide HH AY D

B b be B IY

CH tS cheese CH IY Z

D d day D EY

DH D that DH AE T

EH E red R EH D

ER Ç hurt HH ER T

EY eI ate EY T

F f for F AO R

G g green G R IY N

HH h he HH IY

IH I it IH T

IY i eat IY T

JH dZ just JH AH S T

K k key K IY

L ë late L EY T

M m me M IY

N n no N OW

NG N sing S IH NG

OW oU coat K OW T

OY OI toy T OY

P p pay P EY

R r run R AH N

S s sea S IY

SH S she SH IY

T t tea T IY

TH T thanks TH AE NG K S

UH U hood HH UH D

UW u two T UW

V v very V EH R IY

W w we W IY

Y j yield Y IY L D

Z z zoo Z UW

ZH Z measure M EH ZH ER

Table 1: Arpabet phonetic transcription

4

code name use
EPI epenthetic silence TIMIT
H# silence TIMIT
PAU short pause TIMIT
SIL silence ASR plugin
SP short pause ASR plugin

Table 2: Silence codes

code IPA name example word transcription
AX @ schwa away AX W EY

AX-H devoiced schwa suspect S AX-H S P EH K T

AXR Ä R-colored schwa coward K AW AXR D

BCL b̊ B closure
DCL d̊ D closure
DX R alveolar flap muddy M AH DX IY

EL ë
"

syllabic L bottle B AO DX EL

EM m
"

syllabic M rhythm R IH DH EM

EN n
"

syllabic N button B AH T EN

ENG N
"

syllabic NG Washington W AO SH ENG T EN

GCL g̊ G closure
HV H voiced H ahead AX HV EH D

IX I weak I using Y UW Z IX NG

KCL k̊ K closure
NX R̃ nasal flap winner W IH NX AXR

PCL p̊ P closure
Q P glottal stop uh-oh Q AH Q OW

TCL t̊ T closure
UX 0 fronted U

Table 3: Arpabet extensions

5

where the context part starting from the colon is optional. the identifiers
〈pattern 〉, 〈replacement 〉, 〈left context 〉, and 〈right context 〉 represent se-
quences of phonemes (possibly empty or reduced to a single phoneme), or
(except for 〈replacement 〉) several such sequences separated by |, meaning
that one of the sequences should be present. Also, in the following list 〈vowel 〉
stands for AA|AE|AH|AO|AW|AX|AXR|AY|EH|ER|EY|IH|IX|IY|OW|OY|
UH|UW|UX.

• low/mid vowel reduction
AA|AE|AH|AO|EH|ER|EY|OW|UH −→ AX

• high vowel reduction
IH|IY|UW −→ IX

• R vowel reduction
ER −→ AXR

• syllabic L reduction
AX L|IX L −→ EL

• syllabic M reduction
AX M|IX M −→ EM

• syllabic N reduction
AX N|IX N −→ EN

• syllabic R reduction
AX R|IX R −→ AXR

• flapping
DCL D|TCL T −→ DX : 〈vowel 〉 AX|AXR|IX
• H voicing

HH −→ HV : 〈vowel 〉 〈vowel 〉
• syllabe-final T

T −→ Q : BCL|CH|DCL|DH|GCL|HH|KCL|M|N|PCL|TCL

3.3 Test data

For test data, we use part of the TIMIT corpus [1]. For each utterance,
TIMIT provides four files:

• name.wav, the audio file;
• name.txt, the text transcription;
• name.wrd, the aligned words (we will not use this file);
• name.phn, the aligned phonemes.

6

The forced alignment option of the WaveSurfer ASR plugin does not ac-
cept the name.txt as input, because it also contains timestamps and ponc-
tuation. So we created new files name.ort with timestamps and ponctuation
removed.

For initial tests, we selected 4 sentences among the TIMIT core test set:

• Sentence 1 (file test/dr1/felc0/sx396.wav):
The fish began to leap frantically on the surface of the small lake.
Speaker is a 31-year-old woman from New England.

• Sentence 2 (file test/dr5/mbpm0/sx137.wav):
Tradition requires parental approval for under-age marriage.
Speaker is a 25-year-old man from Southern USA.

• Sentence 3 (file test/dr4/fjlm0/sx323.wav):
The fog prevented them from arriving on time.
Speaker is a 23-year-old woman from South Midlands.

• Sentence 4 (file test/dr7/mgrt0/sx10.wav):
Are your grades higher or lower than Nancy’s?
Speaker is a 29-year-old man from Western USA.

4 Experiments

4.1 Software installation and test

We first installed WaveSurfer and the WaveSurfer ASR plugin, with the
intent to test it without any phonological rules before proceeding with the
implementation of the rules. This apparently simple task took us much more
time than expected, until we discovered that, contrarily to what is said in its
installation instructions, the plugin cannot run if its Swedish language pack
is not installed, even if Swedish is not used.

With both the English and Swedish language packs installed, the plugin
runs. Later, we found out that it is possible to modify the plugin so that
it uses the English language pack by default, and then the Swedish pack is
no longer needed (but the English pack becomes compulsory even if only
Swedish is used).

As a first test, we ran the ASR plugin on our four test sentences, first
in standard recognition mode, then in forced alignment. We observed that
standard recognition performs poorly, with all four sentences resulting in a
meaningless sequence of words (see figures 2 to 5).

7

4.2 When to apply the rules?

We had to face an important choice: at which point of the plugin should we
insert our own code to apply phonological rules? In order to decide this, we
had to analyse how forced alignment is prepared in the plugin.

The plugin communicates with Julius through command-line arguments
and several temporary files, named /tmp/asrtmp.$$.wav (the sound data),
/tmp/asrtmp.$$.lst (which contains only the name of the sound data file),
/tmp/asrtmp.$$.dfa (an automaton that gives the sequence of words in the
sentence) and /tmp/asrtmp.$$.dict (a subset of the dictionary restricted
to words used in the sentence). Here $$ stands for the process number, so
that different instances of WaveSurfer do not write in the same files.

Ideally, one wants to apply phonological rules on a sequence of phonemes
corresponding to the entire sentence, as rules may occur accross word bound-
aries. But this sequence is constructed by Julius itself, and a quick look into
the source code of Julius convinced us that understanding enough of this
code to modify it was not doable in a reasonable time.

The second option is to apply the phonological rules to each word in-
dependently from the others. This could be done inside the plugin, in the
function TranscriptionToJuliusGrammar where /tmp/asrtmp.$$.dict is
constructed. However, since this is our first experience with TCL program-
ming, we prefered to invoke an external program right after the call to this
function.

The external program (a Perl script named pr, stored as the Julius bi-
nary in plugins/asr/bin/), takes as arguments the name of the temporary
dictionary and of the file containing the rules themselves, renames the dic-
tionary, and creates a new dictionary that contains all the pronunciation
variants obtained by applying recursively (and optionally) the rules until no
new variant is found, as is done in [4]1.

The rules themselves are stored in a separate file, added in the English
language pack: plugins/asr/English/rules. This file has a simple text
format that makes it easily customizable.

4.3 User interface

Some TCL code was added in the plugin, mimicking existing code, to add a
checkbox in the Properties dialog of the ASR pane (see figure 1), so that it
is easy to perform alignment with and without phonological rules.

1The program does not attempt to check that this algorithm terminates. It is easy to
design ad hoc rules that will cause it to go into an infinite loop. This does not happen with
real phonological rules, which usually do not increase the length of the phoneme sequence.

8

Figure 1: Properties dialog of the modified ASR plugin

5 Results

5.1 Using real rules

We first tried the first rule: vowels AA, AE, AH, etc. may be reduced to
a schwa AX. The dictionary was correctly augmented with variants, but
recognition then failed with a lengthy error message from Julius.

The reason for this was easily found: the language model used by the
WaveSurfer ASR plugin knows only the 39 phonemes of table 1, plus SIL
and SP. To use our full set of rules, we would need to train a completely new
language model.

5.2 Using modified rules

Since we did not have time for building a new language model, we resorted
to replace the rules with modified ones that use only those 39 phonemes. For
some of the rules such as flapping, this does not make sense, so we kept only
two kinds of rules:

• vowel reduction, using AH and IH instead of AX and IX;
• syllabic L, M, N, R reduction, using AH L, AH M, AH N instead of

EL, EM, EN, and ER instead of AXR.

This results in incorrect pronunciations, but that may be in certain cases
closer from the real pronunciation than the standard one given by the dic-
tionary.

We ran our modified plugin on our four sentences. The results are shown
in figures 2 to 5.

9

Figure 2: Forced alignment for sentence 1

Figure 3: Forced alignment for sentence 2

Figure 4: Forced alignment for sentence 3

10

Figure 5: Forced alignment for sentence 4

The figures show the WaveSurfer window with several panes:

• a spectrogram,
• a time axis,
• the aligned phonemes provided by TIMIT,
• the aligned word provided by TIMIT,
• the output of the ASR plugin in standard recognition mode,
• the output of the ASR plugin in forced alignment mode,
• the output of the ASR plugin in forced alignment mode with phono-

logical rules.

As already noted, the output of the plugin in standard recognition mode
is often very far from the real sequence, and does not seem usable. The
last two panes are mostly identical. The alignment is different from the one
proposed by TIMIT, and very often the end of the phoneme is too late by
up to 0.05s. This is clear for instance on the word fish in sentence 1, where
the end of SH is clear in the spectrogram.

However they are not completely identical, and the influence of the rules
can be seen on a few words. In sentence 1, the words on the seem better
aligned. In sentence 2, the syllabic N and L in the words tradition and
approval are aligned differently, but it is not clearly better. In sentence 3,
the initial the starts much earlier, which is quite surprising as no rule affects
the first phoneme DH. In sentence 4, the ER in higher is better aligned, but
still too late, probably because the following glottal stop Q is not correctly
modeled.

11

6 Discussion and Conclusions

We implemented the use of phonological rules for forced alignment in the
WaveSurfer ASR plugin. The results are currently not very convincing: align-
ment is slightly modified, sometimes but not always improved, but still quite
different from the reference alignment in TIMIT.

The key to improve it does not seem to be in the phonological rules
themselves, but in the language model, which should use a larger set of
phonemes, with finer distinctions. This would in turn allow to implement a
larger set of phonological rules. Also, stress should be taken into account.

Further improvements could probably be achieved by re-implementing
phonological rules inside Julius, in order to make them also operate across
adjacent words. The user interface could be kept, with the call of an ex-
ternal program replaced with an additional argument passed to Julius. At
that stage, it would probably be interesting to follow a different approach:
instead of recursively applying the rules to generate a potentially long list of
variants, one could use a finite automaton to encode all variants simultane-
ously. Of course, according to theory arbitrary context-sensitive rules cannot
be expressed by a finite automaton, but the particular rules that are used
here create only a finite list of variants so the automation always exists.

References

[1] J. Garofolo et al., TIMIT Acoustic-Phonetic Continuous Speech Corpus
LDC93S1. Web Download. Philadelphia: Linguistic Data Consortium,
1993. [https://catalog.ldc.upenn.edu/LDC93S1]

[2] F. Rei, TIPA: A System for Processing Phonetic Symbols in LATEX,
TUGboat 17, 1996.

[3] G. Salvi and N. Vanhainen, The WaveSurfer Automatic Speech
Recognition Plugin, Proceedings of LREC, Reykjavik, Iceland, 2014.
[http://speech.kth.se/asr/]

[4] G. Tajchman, D. Jurafsky, and E. Fosler, Learning Phonological
Rule Probabilities from Speech Corpora with Exploratory Computational
Phonology, ACL ’95, 1995.

[5] V. Zue, S. Seneff, and J. R. Glass, Speech database development at MIT:
Timit and beyond, Speech Communication 9 (1990), 351–356.

[6] Arpabet, Wikipedia. [http://en.wikipedia.org/wiki/Arpabet]

12

[7] The CMU Pronouncing Dictionary, Carnegie Mellon University.
[http://www.speech.cs.cmu.edu/cgi-bin/cmudict]

[8] Open-Source Large Vocabulary CSR Engine Julius, Nagoya Institute of
Technology. [http://julius.osdn.jp/en_index.php]

[9] Phonological Rule Inventory, Florida Linguistic Association.
[http://floridalinguistics.com/?page_id=587]

13

