
Solutions to Exam in EL2745 Principles of Wireless Sensor Networks, October 24, 2014

1. Bernoulli vs Gilbert-Elliot Model of the Wireless Channel

(a) For Bernoulli model, the message loss rate is p by definition. Let π0
and π1 be the steady state probabilities of being in the reception and
loss states, respectively. In the steady state, we have[

π0
π1

]
=

[
1− p01 p01

p10 1− p10

][
π0
π1

]
.

it follows that the stationary probability of being in the reception and
loss states are

π0 =
p10

p01 + p10
,

and
π1 =

p01

p01 + p10
.

Then, loss rate is π1.
Gilbert-Elliot model reduces to Bernoulli model if its loss probability
does not depend on the previous state. This condition implies that

Pr{loss | previous loss}= Pr{loss | previous reception} ,

which reduces to p11 = 1− p10 = p01, or equivalently p01 + p10 = 1.

(b) For Bernoulli model, due to independency of error events, the proba-
bility of a burst of size l is

Pr{loss burst of length l}= pl .

For Gilbert-Elliot model,

Pr{loss burst of length l}= pl−1
11 p10 = (1− p10)

l−1 p10 ,

because we have l losses if we have a loss, and after (l − 1) other
losses, we transit to reception state.

(c) We denote by ABL the average burst length. For Bernoulli model,
recalling the previous item, we have

ABL =
∞

∑
l=1

l×Pr{loss burst of length l}=
∞

∑
l=1

l pl =
p

(1− p)2 .

For Gilbert model,

ABL=
∞

∑
l=1

l×Pr{loss burst of length l}=
∞

∑
l=1

l (1− p10)
l−1 p10 =

1
p10

.
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(d) The probability of loss of the Bernoulli model is p. Thus we have
p = P(γ) f , where P(γ) is the probability of error for the BPSK digital
modulation as a function of Eb/N0, γ, in the AWGN channel. Let the
channel amplitude be denoted by the random variable α, and let the av-
erage SNR normalized per bit be denoted by γ? = E[α2]Eb/N0. Then
to obtain P(e) for a Rayleigh fading channel P(γ) must be integrated
over the distribution of γ:

P(e) =
∫

∞

0
P(γ)p(γ)dγ,

For Rayleigh fading,

p(γ) =
1
γ?

e−γ/γ?.

In the case of coherent BPSK, the integration can actually be computed
yielding

P(e) =
1
2

[
1−

√
γ?

1+ γ?

]
.

At high SNR such as OQPSK systems, the approximation (1+x)1/2∼
1+ x/2 can be used, giving

P(e)∼ 1
4γ?

.
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2. Slotted ALOHA with Forward Error Correction

(a) The probability of loss is equal to the probability of having, at least,
another arrival in the same time slot. Hence,

Pr(loss) = 1−Pr(no arrival at this time slot) = 1− e−T λ . (1)

For T = 1, we have that

1− e−λ ≤ 0.1 , (2)

thus λ≤− ln(0.9) = 0.105.

(b) If T = 2, then,
1− e−2λ ≤ 0.1 ,

thus
λ≤− ln(0.9)/2 = 0.052 ,

which is reasonable, since data rate per slot should remain unchanged
to achieve the same packet loss probability.

(c) FEC doubles the load in the system, meaning that the new arrival rate
is 2λ, however now messages have two opportunities to get success-
fully received. We say a message is lost when transmission is unsuc-
cessful in both cases. It implies that

Pr(loss) = Pr(collision at one transmission)2 =
(

1− e−2λ

)2
. (3)

(d) Comparing (1) to (3), FEC is efficient if(
1− e−2λ

)2
<
(

1− e−λ

)
, (4)

which gives λ < 0.48. the final result indicates that FEC is efficient for
low load. The main reason is that FEC increases the load, which may
lead to the well-known throughput collapse of ALOHA.
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3. Detection All estimators we want to compute are dependent on the posterior
pdf p(θ|x). In order to find it, we first compute the joint distribution:

p(x,θ) = p(x|θ)p(θ)

= (
1
θ

U(θ− x)U(x))(θexp(−θ)U(θ))

= exp(−θ)U(θ)U(x)U(θ− x) ,

where function U(x) = x if x ≥ 0, otherwise it equals to 0. From the joint
pdf, we can obtain p(x) as

p(x) =
∫

∞

−∞

p(x,θ)dθ

=
∫

∞

−∞

exp(−θ)U(θ)U(x)U(θ− x)dθ

=
∫

∞

x
exp(−θ)dθ, x≥ 0

= exp(−x)U(x)

(a) We can find the posterior pdf p(θ|x) (Bayes rule)

p(θ|x) = p(x|θ)p(θ)
p(x)

=

{
exp(−θ)
exp(−x) , 0 < x≤ θ

0, otherwise .

From here we can find that the MAP: θ̂MAP = x.

(b) The MMSE can be found by E[θ|x]:

E[θ|x] = exp(x)
∫

∞

x
θexp(−θ)dθ

= exp(x)(x+1)exp(−x)
= x+1 .

Thus, θ̂MMSE = x+1 for x > 0.

(c) The minimum mean absolute error estimator is given by the median of
p(θ|x):

θ̂MED = avg
∫

θ

x
exp(x−θ

′)dθ
′ =

1
2

⇒ avgex−θ =
1
2

⇒ θ̂MED = ln2+ x

(d) The MMSE and MAP are the same for Gaussian distributions. See the
chapter ”Distributed Estimation” of the draft book ”An Introduction
to WSNs”.
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4. Localization and Synchronization

(a) The estimator of the position is the following:

x̂ = argmin(y1− cos(x))2 +(y2− sin(x))2

= argminy2
1 + y2

2 +1−2y1 cos(x)−2y2 sin(x) .

Differentiating and setting equal to zero gives

x̂ = arctan(y2/y1) .

(b) Define y = (y1,y2,y3)
T = (r1− r2,r1− r3,r2− r3)

T . Then, we have

ri = hi(x)+ ei =
√
(pi,1− x1)2 +(pi,2− x2)2 + r0 + ei ,

yk = h̄k(x)+ ēk ,

h̄1(x) = h1(x)−hx(x) ,
h̄2(x) = h1(x)−h3(x) ,
h̄3(x) = h2(x)−h3(x) ,

h̄(x) =

1 −1 0
1 0 −1
0 1 −1

h(x) .

Numerically, we have

h(x0) = (5,4,5)T ,

h̄(x0) = (1,0,−1)T ,

R̄ = T Cov(e)T T =

 2 1 −1
1 2 1
−1 1 2


(c) Since the measurements are perfect, we have the expression as fol-

lows:

tan(ϕ1) =
y− y1

x− x1
, tan(ϕ2) =

y− y2

x− x2
.

Then by inverting the measurement model we get the relation:

x =
x2 tan(ϕ2)− x1 tan(ϕ1)+ y1− y2

tan(ϕ2)− tan(ϕ1)
,

y =
(x2− x1) tan(ϕ1) tan(ϕ2)+ y1 tan(ϕ2)− y2 tan(ϕ1)

tan(ϕ2)− tan(ϕ1)
.

Since (x1,y1) = (0,0) and (x2,y2) = (1,0), we have

x =
tan(ϕ2) tan(ϕ1)

tan(ϕ2)− tan(ϕ1)
,

y =
tan(ϕ1) tan(ϕ2)

tan(ϕ2)− tan(ϕ1)
.
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(d) To find the best fit to the data according to the MMSE criterion, we
form Ci(t1)

Ci(t2)
Ci(t3)

=

1 Cs(t1)
1 Cs(t2)
1 Cs(t3)

[a0
a1

]
2700

2810
2920

=

1 2000
1 2100
1 2200

[a0
a1

]

Thus by using the MMSE X = A†Y , we have (a0,a1) = (500,1.1).
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5. Networked Control System

(a) The sampled system is given by

x(kh+h) = Φx(xh)+Γu(kh)
y(kh) =Cx(kh) ,

where

Φ = e−ah

Γ =
∫ h

0
e−asdsb =

b
a

(
1− e−ah

)
.

Thus the sampled system is

x(kh+h) = e−ahx(kh)+
b
a

(
1− e−ah

)
u(kh)

y(kh) = cx(kh) .

The poles of the sampled system are the eigenvalues of Φ. Thus there
is a real pole at e−ah. If h is small e−ah≈ 1. If a > 0 the the pole moves
towards the origin as h increases, if a < 0 it moves along the positive
real axis.

(b) The sampled system is

x(k+1) = Φx(k)+Γu(k)
y(k) = x(k) ,

where

Φ =

(
e−1 0
0 e−2

)
Γ =

(
1− e−1

1−e−2

2

)
.

(c) The characteristic polynomial of Φ−ΓL is

z2−0.3z+0.02 = (z−0.1)(z−0.2) .

Thus the poles are at 0.1 and 0.2. The system is stable.

(d) We use the following result to study the stability of the system:

Theorem 1 Consider the system given in Fig. 2. Suppose that the
closed-loop system without packet losses is stable. Then

• if the open-loop system is marginally stable, then the system is
exponentially stable for all 0 < r ≤ 1.
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• if the open-loop system is unstable, then the system is exponen-
tially stable for all

1
1− γ1/γ2

< r ≤ 1 ,

where γ1 = log[λ2
max(Φ−ΓK)], γ2 = log[λ2

max(Φ)]

Thus, the stability of this system depends on the values of K,h,A.
When the conditions are not satisfied, from a control theory point of
view we may choose different K for controller, or different sampling
time h for the system to make the system stable. Instead, from a net-
working point of view, we may change the protocol parameters to so
have a packet loss probability that meets the stability conditions.
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