
AUTOMATIC CONTROL

KTH

EL2745 Principles of Wireless Sensor Networks

Exam 08:00–13:00, October 28, 2015

Aid:

Printed slides from the course, reading material such as ‘An Introduction to
Wireless Sensor Networks” or similar text approved by course responsible are
approved; Mathematical handbook (e.g., “Beta Mathematics Handbook” by
R̊ade & Westergren) and pocket calculators are approved. The course com-
pendium, your notes to the exercise lectures, other textbooks, handbooks, ex-
ercises, solutions, smartphones, tablets, etc. may not be used.

Observandum:

• Name and social security number (personnummer) on every page.

• Only one solution per page and write on one side per sheet.

• Each answer must be motivated.

• Specify the total number of handed-in pages on the cover.

• Each subproblem is marked with its maximum credit.

Grading:

Grade A: ≥ 43, Grade B: ≥ 38

Grade C: ≥ 33, Grade D: ≥ 28

Grade E: ≥ 23, Grade Fx: ≥ 21

Results:

The results will be available on your “my pages” between one and two weeks
from the exam.

Responsible: Carlo Fischione, carlofi@kth.se

Good Luck!
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Figure 1: Two state Gilbert-Elliot model. State 0 represents a “message reception” event.
State 1 represents a “message loss” event.

1. Bernoulli and Gilbert-Elliot Model of the Wireless Channel

In Wireless Sensor Networks (WSNs) communication problems, the physical layer
of the communication between a transmitter and a receiver node, which includes
the communication channel, and modulation schemes, is modelled by the Bernoulli
and Gilbert-Elliot models. The Bernoulli model assumes that the event of loosing
a message has same probability p, independent of the messages. Instead, Gilbert-
Elliot model uses a two state Markov chain to capture bursty error behavior of a
wireless channel, as illustrated in Figure 1. A message is received in Reception state,
state 0, whereas it will be lost in Loss state, state 1. The probabilities to transit
from a state to another are depicted in Figure 1.

(a) [2p] Find the steady-state message loss rates for Bernoulli and Gilbert-Elliot mod-
els. When the Gilbert-Elliot model reduces to the Bernoulli model?

(b) [2p] When l messages are consecutively lost over the wireless channel, we say that
a burst of size l occurs. Find the probability of having a burst of size l for the
Bernoulli and Gilbert-Elliot models and comment the differences.

(c) [3p] Find the average burst length for both models.

(d) [3p] Consider the Bernoulli model. Messages of f bits are transmitted over a
Rayleigh channel and received with an Additive White Gaussian Noise (AWGN).
Derive the expression of the probability of message loss of the Bernoulli model
for the given channel at high SNR regimes. [hint: At high SNR regimes one
can use the approximation (1 + x)1/2 ∼ 1 + x/2.]
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2. Slotted ALOHA with Forward Error Correction

In a slotted ALOHA network, a “delay sensitive message” is transmitted as follows:
once a node has the message to transmit, it attempts transmission in the upcoming
time slot; if collision happens at the receiver, the message is lost and will not be
retransmitted, since it would arrive late to the receiver anyway and this is not
compatible with the “delay sensitive message” assumption. Suppose a large number
of nodes are in the network, and therefore from the point of view of a receiver
node, altogether they generate messages according to a Poisson process with arrival
intensity λ. Suppose that message transmission times are the same as the time slot
length T .

(a) [2p] Assume that the receivers can tolerate a message loss probability of 0.1. What
is the maximum allowed arrival intensity of messages at the transmitter if
T = 1? [Hint: recall that the probability of “no arrival” in a time slot of
duration T is e−Tλ]

(b) [2p] Assume again that the receivers can tolerate a message loss probability of 0.1.
Suppose that the time slots have the duration of two time units, 2T with T = 1.
What is the maximum allowed arrival intensity for the receivers to experience
the message loss probability of 0.1?

(c) [3p] To cope with the message losses, a so called forward error correction (FEC) is
introduced in the ALOHA system. In FEC, information is transmitted twice, in
two different messages separated by a random delay. This still gives a Poisson
distribution modeling the message generation process. Give the probability
that a message is successfully received.

(d) [3p] Argue for which arrival intensity the FEC described above increases the prob-
ability that messages are successfully received.
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3. Detection

Suppose that a sensor node makes an observation x that has the following condi-
tionally uniform density

p(x|θ) =

{
1
θ
, 0 < x ≤ θ

0 , otherwise ,

where θ is a random variable with density

p(θ) =

{
θ exp(−θ) , θ ≥ 0
0 , otherwise .

(a) [2p] Find the Maximum a Posteriori (MAP) estimator of θ. [Hint: A useful formula:
for ν ≥ 0,

∫∞
ν
u exp(−u)du = (ν + 1)exp(−ν)]

(b) [2p] Find the Minimum Mean Square Error (MMSE) estimator of θ.

(c) [3p] Consider the mean absolute error between an estimator and θ. Compute the
estimator of θ that gives the minimum of such an error.

(d) [3p] Suppose now that θ is constant, i.e., it does not follow the density p(θ) given
above. Prove under which conditional distribution p(x|θ) the MAP and MMSE
estimators are identical.
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4. Localization and Synchronization

In this exercise, you will consider different problems of localization and synchroniza-
tion.

(a) [2p] Suppose a sensor node observe the Cartesian position of a target that is known
to be located on the unit circle. The sensor measurement model for this prob-
lem can be written

y =

[
cos(x)
sin(x)

]
+ e , e ∼ N (0, σ2I) .

Show that the Maximum Likelihood Estimate (MLE) for the polar position
(angle x) is given by

x̂ = arctan(y2/y1) .

(b) [3p] Consider a sensor network with M = 3 sensors located at (0, 0), (3, 0) and
(6, 0), respectively. The true target position is at x0 = (3, 4). Each sensor
provides a Time of Arrival (TOA) range measurement ri = ‖pi− x0‖+ r0 + ei,
where R = Cov(ei) = 1 and r0 is an unknown constant. In vector form, this
reads y = (r1, r2, r3)

T = h(x) + e. Derive the expression of the sensor model
for the Time Difference of Arrival (TDOA) observations ri − rj for all i 6= j in
the generic form ȳ = h̄(x̄) + ē. What is the covariance matrix R̄ = Cov(ē) and
h̄(x0) numerically in this case?

(c) [3p] Consider a sensor network where two sensors at known positions (xi, yi), i =
1, 2. Triangulate the position of an object in unknown position (x, y) based
on the two angle measurements ϕ1 and ϕ2. Then, assume that the angle
measurements are perfect. Derive an expression for (x, y) when (x1, y1) = (0, 0)
and (x2, y2) = (1, 0).

(d) [2p] Suppose that node i has software clock Ci(t), and wants to establish the rel-
ative time between it and some time server. The local clock of node i can be
represented relative to the server as follow:

Ci(t) = a0 + a1Cs(t) ,

where a0 and a1 are the relative clock offset and drift, respectively. Assume
that a0 and a1 are constant. Consider the following measurements for Ci(t)
are 2700, 2810, and 2920, while those for Cs(t) are 2000, 2100, and 2200. Find
the Minimum Mean Square Estimator (MMSE) of a0 and a1.
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5. Networked Control System

Plant

Controller

Figure 2: Closed loop system over a WSN.

Consider the Wireless Sensor Network Control System (WSN-CS) in Figure 2. The
system consists of a continuous plant

ẋ(t) = Ax(t) +Bu(t) (1a)

y(t) = Cx(t) . (1b)

The system is sampled with sampling time h, and the discrete controller is given by

u(kh) = −Kx(kh), k = 0, 1, 2, . . . ,

where K is a constant. Assume that the network does not introduce any delay and
any message losses, unless explicitly stated.

(a) [2p] Consider the special form of the system (1) above, given by

ẋ(t) = −ax(t) + bu(t)

y(t) = cx(t) ,

where a, b, and c are scalars. Let the input be constant over periods of length
h. Sample the system and discuss how the stability of the discrete time system
vary with the sampling time h.

(b) [2p] Now consider the special form of the system (1) above, given by

ẋ(t) =

(
−1 0

0− 2

)
x(t) +

(
1
1

)
u(t)

y(t) = x(t) .

Sample this system with sampling period h = 1.

(c) [2p] Consider the system given in item (b). Assume that u(k) = −Kx(k), where
K = [0.3059, 0.0227]T . Analyze the stability of the system.

(d) [4p] Now, suppose that the network unfortunately introduces message losses. Give
and discuss sufficient conditions for which the closed loop system is stable. If
these conditions are not satisfied, discuss what can be done at the network
level (protocol parameters) or at the controller level so to still ensure closed
loop stability.
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