
MEETING 8 - REFLECTIONS ON CONGRUENCES AND PROOF IN NUMBER

THEORY

In this meeting we will review and deepen earlier work: we will look at why The Euclidean Algorithm works,
study various examples of proofs in numbers theory and especially prove something called Fermat’s Little
Theorem and Wilson’s Theorem.

But first, some Peer Instruction!

Let us take another example of The Euclidean Algorithm in action: Find the multiplicative inverse of 11 in
Z36 and then use that to find all integers such that 11x ≡ 7 (mod 36).

Solution: We start by finding the greatest common divisor between 11 and 36, it is 1, but we search for s, t
such that s · 11 + t · 36 = 1, then s will be the multiplicative inverse of 11 in Z36. The Euclidean Algorithm is
carried out by repeated applications of the Division Algorithm:

36 = 3 · 11 + 3, 11 = 3 · 3 + 2, 3 = 1 · 2 + 1, here we have reached the bottom (gcd=1) so we move
up again:

1 = 3− 2 · 1, 1 = 3− (11− 3 · 3) · 1 ⇔ 1 = 4 · 3− 1 · 11, 1 = 4 · (36− 3 · 11)− 1 · 11, 1 = 4 · 36− 13 · 11.
This means that −13 · 11 ≡ 1 (mod 36), but what about if we want to have an s in the interval 0, 1, . . . , 35?

Well, we can just use the rule that x · y ≡ 1 (mod n) ⇔ (x+ k · n) · y ≡ 1 (mod n) so that we can write

−13 · 11 ≡ 1 (mod 36) ⇔ (36− 13) · 11 ≡ 1 (mod 36) ⇔ 23 · 11 ≡ 1 (mod 36)

and from here we can say that s = 23 so that the multiplicative inverse of 11 in Z36 is 23.
Now we can solve the congruence equation 11x ≡ 7 (mod 36). We begin by rewriting it in Z36. As 11

apparently has a multiplicative inverse in Z36 we can write the congruence as the equation

11 · x = 7

multiplying both sides with the multiplicative inverse of 11, which is 23 so that

11 · x = 7 ⇔ 23 · 11 · x = 23 · 7 ⇔ 23 · 11 · x = 161 = 17 ⇔

23 · 11 · x = 1 · x = x = 17

So the result in Z36 is 17, so that the solutions to the original congruence is all the numbers on the form

17 + 36 · k, k = 0,±1,±2, . . . .

Why does the Euclidean Algorithm work? Why do we always end up with the Greatest Common Divisor
when we reduce two numbers by repeatedly using the Division Algorithm? It is due to this lemma:

Lemma: Let a, b be two positive integers with b > a. Then if the division algorithm is applied to yield

b = a · q + r

where 0 ≤ r < a and q ≥ 0, then we have gcd(b, a) = gcd(a, r).

By this lemma, we can start with any two positive numbers, b, a and reduce and eventually get down to the
the greatest common divisor. This is what we have done so far. I now remains to prove this lemma.

Proof: Introduce two sets of positive integers:

A = {d ∈ Z+; d|b ∧ d|a} and B = {d ∈ Z+; d|a ∧ d|r}

that is all the positive common divisors to b, a and a, r respectively. These two sets are nonempty. (Why?)
Then by definition gcd(b, a) is the largest element in A and gcd(a, r) is the largest element in B. But we shall
prove that the two sets are in fact the same. Choose an element d1 ∈ A. Then d1|b and d1|a, so that we can
write b = k1 · d1 and a = l1 · d1. We substitute this into the equation b = a · q + r yielding

k1 · d1 = l1 · d1 · q + r ⇔ r = k1 · d1 − l1 · d1 · q = d1 · (k1 − l1 · q) ⇒ d1|r

so that we have both d1|a and d1|r, that is d1 is a common divisor for a, r, that is we have d1 ∈ B. Since this
works for all common divisors in A we have A ⊆ B. But the exact same procedure can be done in reverse, by
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choosing an element in B we can see that it is in A, that is, we can easily show that B ⊆ A. But then A = B

and the two largest elements, gcd(b, a) and gcd(a, r) must be the same.

We could of course also formulate a proof by not appealing to the notion of sets, but I think that it becomes
a bit clear if we do use the notion of sets.

Let us look at two classic theorems:

Theorem: The smallest divisor greater than 1 (since 1 divides every number we do not really care about
that) of any number greater than 1 must be a prime number.

Proof: Let n > 1 be any integer. We again introduce the set of all positive nontrivial divisors of n, this is
the set

{d > 1; d|n}.

It is our task to show that the smallest element of this set is a prime number. If the number n itself is al-
ready a prime number then the set only has one element, namely n itself and since this is a prime number
then smallest element (which is the only element) is a prime number. Assume that n is not a prime num-
ber, then we can write n = a · b for two integers a > 1 and b > 1 so we have show that the set is at least
not empty. Since it has only positive numbers in it, it must have a smallest element. Call this element q.
We want to show that q is a prime numeber. Assume that q is not a prime number, then there are, again,
a > 1, b > 1 such that q = a · b, but which a, b are possible? We know that 1 < a < q and 1 < b < q, but
since a|q and b|q and q|n, we must have both a|n and b|n, but this means that we have found smaller divisors
(two of the even! a, b are smaller divisors of n than q) that divides n. This contradicts our assumption that
q was the smallest divisor greater than 1. This means that q must be a prime number which concludes the proof.

From this theorem follows an extremely important theorem:

Theorem: Euclid There are infinitely many prime numbers.

Proof: Assume that there is only a finite number of prime numbers, then we can put all of them in a list:
p1, p2, . . . , pn where n is some (possibly big) number. We know that p1 = 2 and p2 = 3 and that, according to
the assumption, there are no prime numbers bigger than pn. Then form the very big number

N = p1 · p2 · . . . · pn + 1.

Since this number is larger than pn, which is the largest prime number, then N itself cannot be a prime number.
Hence there must be a smallest prime number that dividies this number, since we have a complete list of all
the prime numbers we know that one of them divides this n, that is we know that

p1|N or p2|N . . . pn|N.

But none of these divisions work, why? Well, N gives remainder 1 when divided by each of p1, p2, . . . , pn, that
is the way we made N , so this is a contradiction, we have reached a contradiction and the impossible thing
that led to this contradiction is the assumption that there is a finite number of prime numbers, which must be
false. Hence there are infinitely many prime numbers which is what we wanted to prove.

This last theorem guarantees that we can form arbitrarily large keys in the RSA algorithm - which is good
for our privacy and commerce.

We look at another important result:

Theorem: (Fermat’s Little Theorem) If p is a prime number and p ∤ c, then

cp−1 ≡ 1 (mod p).

Proof: By the previous proposition, no two integers c, 2c, . . . , (p− 1)c are congruent modulo p. This means

that in Zp the elements c, 2c, . . . , (p− 1)c are just the elements 1, 2, . . . , c but possibly in another order. This
means that

c · 2c · . . . · (p− 1)c = c · 2 · c · . . . · (p − 1) · c = 1 · 2 · . . . · p− 1

so that

c · c · . . . · c(p− 1)! = (p − 1)!
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which gives (after ”division” by (p − 1)!) cp−1 = 1 which, written out as a congruence is cp−1 ≡ 1 (mod p)
which is what we wanted to prove.

During the last meeting we worked with pairing up the nonzero elements of Zp where p is an odd prime i
twos, the multiplicative inverse together. We will use this property now in the proof of another theorem:

Theorem: (Wilson’s Theorem) For every prime number p we have

(p− 1)! ≡ − 1 (mod p).

Proof: In Zp, line up all nonzero elements and multiply them together: 1 · 2 · . . . · p− 1. What is this

element? Well on one hand it is (p− 1)!, but we can also rearrange the product and pair up each element with
its own multiplicative inverse. This is possible according to the above investigation, in Z7 it would look like
this:

1 · 2 · 3 · 4 · 5 · 6 = 1 · 2 · 4 · 3 · 5 · 6 = 1 · 1 · 1 · 6 = 6

and in general it would look like this:

1 · . . . · p− 1 = 1 · 1 · . . . · 1 · p− 1 = p− 1

so that
(p − 1)! = p− 1

but after rewriting this as a congruence it reads (p − 1)! ≡ p − 1 ≡ − 1 (mod p) which is what we wanted to
prove.


