MEETING 14 - MORE GRAPH THEORY

We continue with graph theory.

Paths and circuits. We will continue with graph theory and prepare the formulation of the second program-
ming assignment.
Graph theory abound with technical terms, so here comes another handful of them:

Definition: A walk in a graph is an alternating sequence of vertices and edges, beginning and ending with
a vertex, in which each edge is incident with the edge immediately preceding it and the vertex immediately
following it. The length of a walk is the number of edges in it. A walk is closed if the first vertex is the same
as the last and otherwise it is called open. A trail is a walk in which all edges are distinct; a path is a walk
in which all vertices are distinct. A closed trail is called a circuit. A circuit in which the first vertex appears
exactly twice (at the beginning and at the end) and in which no other vertex appears more that once is called
a cycle. An n-cycle is a cycle with n vertices. It is even is n is even and odd if n is odd.

When encountering a definition like this, with no less than 11(!) new concepts it is absolutely necessary to
draw a picture illustrating each concept. We will therefore draw eight graphs, the first four will illustrate a
walk which is not a path or trail, then we have a closed walk which is not a path or trail, then we will have a
trail which is not a path and lastly a path. Here are the first four figures:

b ¢ b c b c b c
a d a d a d a d
8 8 g g
abcfbedg abcfbcdgea aefodfc abedfe

We choose to work in the same graph to illustrate more clearly the concepts. We denote a walk by naming
the vertices it passes, but we do not name the edges that it passes, this is redundant since the two vertices
that an edge has as endpoints specifies the edge. There are four walks illustrated above, the first one is an
open walk and it is abcfbedg, which is, as mentioned above, a walk that is neither a trail nor a path (since
both edges and vertices repeat). The second walk is abcfbcdga which is the same walk as before, but we have
added content so that it becomes closed. Then comes aefgdfc, which is an open trail, it is a trail since the
edges are distinct, they do not repeat, however, since the vertex f repeats, it is not a path. Finally we give
the path abcdfg in which no vertices repeat, they are all distinct, that makes it a path. We can make a small
observation here: in a path, no vertex appears twice. This means that also no edge can repeat, for if an edge
repeats, then that edge is incident on a vertex that must also repeat, which means that it is not a path. We
have therefore found that for all walks W we have the implication Wis not a trail = Wis not a path, but this
is the converse of Wis a path = Wis a trail, so all paths are trails. This means that if a walk is a path it is
automatically a trail. It is harder for a walk to be a path than it is to be a trail. Make sure you study these
concepts and understand each term well. Draw examples similar to those given above.

We will now produce examples of a circuit (closed trail) that is not a cycle and a cycle. It is not possible
to give a "closed path” because a path must not contain repeated vertices. But a cycle will really be what we
will be interested in. (In a sense a cycle is almost like a closed path; more precisely: a cycle would have been
a path because it requires that vertices do not repeat, but only the beginning vertex, which coincide with the
end vertex is the only one that repeats.) It will also become clear that the two concepts that we are really
interested in are cycle and path, the earlier concepts, walk, trail and, to some extent, circuit, are really there
mainly to help us develop clarity of the concepts cycle and path.

Here are the promised examples:



2 MEETING 14 - MORE GRAPH THEORY

abecdiegfa abceihgfa

The first example gives a circuit abecdiegfa that is not a cycle because in a cycle no repeated vertices are
allowed. As the circuit passes through the vertex e, twice, this means that it cannot be a cycle. The other
example abceihg fa however does indeed illustrate a cycle precisely because no vertex (other than the starting
vertex a) appears twice.

In these examples we have omitted to discuss the length or parity (whether an n-cycle is odd or even), but
these concepts are very easy to grasp so we concentrate on the more important activity of making clear just
what is a trail, a path, a circuit, and a cycle.

We will now start to introduce some more concepts (Hooray!)
Defintion: An Fulerian circuit in a graph is a circuit that contains every vertex and every edge. A graph

is called Fulerian if it has an Eulerian circuit. Similarly an FEulerian trail is a trail between two vertices that
contain every vertex and every edge. A graph is connected if there exists a walk between any two vertices.

The Bridges of Konigsberg. The town of Koningsberg (contemporary Kaliningrad) had 7 bridges and the out-
line of the city is given to the left of the figure below:

To the right is a pictorial representation of a graph (a pseudograph, to be correct) that captures the rela-
tionship between the four land masses, A, B, C, D, these fours land masses are represented by the four vertices
a,b,c,d in the graph and the bridges are edges in the graph. It was a Sunday pleasure (of the wealthy I guess)
to stroll around the city and try to find a way to walk across all bridges exactly once and return to the starting
point. No one ever succeeded in doing this and a reident of this city, Leonhard Euler, realised that it is indeed
impossible to do this. In terms of our recently defined concepts in graph theory, being able to do the Sunday
walk just described would be equivalent to finding an Euler circuit in the graph to the right. Let us see why
this is impossible.

It is a standard proof by contradiction: assume that there is an Euler circuit starting at one vertex and
ending at the same vertex. Traversing a graph via an Euler circuit requires us to pass each edge exactly once.
What would this mean for the degree of a vertex in the graph? If we complete the Euler circuit we must
arrive at every vertex (land mass) using one edge (bridge) and then we must leave this vertex using another
edge. We might visit the same vertex several but each time we arrive using one edge, we must leave the vertex
using another edge. For this to be possible there must always be an even number of edges incident on every
vertex. This means that every vertex in the graph must have even degree. What are the degrees of the vertices
of the graph? Why, they are 5,3, 3,3, they are all odd, not a single one of them is even. But the existence
of an Eulerian circuit implies that they must all be even, this is a contradiction, hence there cannot be any
Eulerian circuit and we have reproduced the argument that Euler himself probably used to destroy the Sunday
amusement of the (probably more well-to-do) people in the city of Konigsberg.

In fact this is a generally valid theorem:

Theorem: A graph is Eulerian (has an Eulerian circuit) if and only if it is connected and the degree of
every vertex is even.



MEETING 14 - MORE GRAPH THEORY 3

We omit the proof, it is not hard, but contains many details which you are welcome to study but we regard it
as being outside of the course.

Finding an Eulerian circuit is certainly not only a matter of pleasure or entertainment, it is a very important
procedure when planning large infrastructure maintenance, for example if the government of a country with
a vast network of roads wishes to maintain those roads accessing them must be done in an economical way.
If all the roads could be travelled and passing each road exactly once, then that would be the most desirable
way. However, this may not be possible, because it is equivalent to finding an Eulerian circuit, such a circuit
may not exist. Well, we can then disregard a well-chosen set of roads so that our network of roads in fact
constitute a graph with each node having an even degree. When we have found an Eulerian circuit in this
reduces network of roads, we can reintroduced the disregarded roads again and present a plan with which to
access all the roads in a fairly economical way.

We will revisit this particular application when we introduce so-called weighted graphs.

To close this section we just state a variation of the above theorem concerning Eulerian trails, it can be
studied when the Eulerian circuits have been somewhat mastered:

Theorem: A graph G contains an Eulerian trail between two different vertices u,v < G is connected and
all vertices except u, v are even.

Proof: The proof rests on the preceding theorem on Eulerian circuits and is not hard at all, but it is very
long and but best studied when an understanding of Eulerian circuits is more solid.

Hamiltonian Cycles. We will not study this in much detail, but we will focus on the following:

1. To know what a Hamiltonian Cycle is and to be able of finding one.
2. To understand and sometimes produce proofs of when a Hamiltonian cycle does not exist.
3. Gray Codes.

We will start by laying down precisely what it is:

Definition: A Hamiltonian cycle in a graph is a cycle that contains every vertex of the graph. A Hamil-
tonian graph is a graph that has a Hamiltonian cycle.

Consider the two graphs given below:
a a

b d b d

The one on the right is the complete graph on 4 vertices, as such it is definitely Hamiltonian. (Are all K,
Hamiltonian? Why? Why not?) Let us call the graph on the left G. We wish to prove that it is not
Hamiltonian, that is that it has no Hamiltonian cycle. This is a typical situation in which one resorts to proof
by contradiction. We assume that there is a Hamiltonian cycle H in G. The we consider the central vertex
¢, as this vertex is a part of the cycle and a,b also must be part of H (a Hamiltonian cycle must contain all
vertices), then since the only edge that connects these vertices are bc and ca, a segment of H must be acb or
bca. Now d needs to fit into the picture too, but since the only edge that connects d to the other vertices is cd
and c already is in the cycle we cannot use this edge, this would make the vertex ¢ appear twice in H which is
a contradiction. We conclude that there cannot be any Hamiltonian cycle in G, hence G is not Hamiltonian.

In general, it is of course easier for a graph to be Hamiltonian the more edges there are, hence it would be a
very adequate suspicion that K, that contains all possible vertices is indeed Hamiltonian. An earlier theorem
enabled us to decide precisely which graphs are Eulerian (and which are not), but in general there is no easy
method to decide whether there a graph is Hamiltonian or not. The easiest case is of course if the graph is
Hamiltonian and we are able to actually find a Hamiltonian cycle as with K4 above.

Hamiltonian graphs that has usage in the robust implementation of asynchronous automatons with digital
circuitry, the state diagram is built on an n-dimensional cube and enables coding of adjacent states in binary
sequences differing only in one bit. Another application is related to this and it is called Gray Codes and en-
ables the creation of digital fault tolerant detection of spatial placements of machine elements that are digitally
controlled. A Gray ocde of length n is a list of all 2™ sequences of 0’s and 1’s with the property that that each
sequence in the list differs from the next in precisely 1 digit (bit), and the last differs from the first in precisely



4 MEETING 14 - MORE GRAPH THEORY

one bit. For example 00,01, 11,10 is a Gray code of length 2.

The Adjacency Matriz. Study this independently. It is also supported in the laborative work.

Shortest Path Algorithms. We will study the so-called Dijkstra’s Algorithm. But first a concept:

Definition: A weighted graph is a graph G(V, E) together witha function w : E — [0,00). If e is an edge,
the non-negative real number w(e) is called the weight of e. The weight of a subgraph of G (for example a
path or a trail) is the sum of the weights of the edges of the subgraph.

A classical problem is the Travelling Salesperson’s Problem which attempts to find, in a Hamiltonian graph,
a Hamiltonian cycle of least weight. This could representent finding a way to visit a number of cities (repre-
sented by vertices) which is the cheapest way for a merchant to visit all the cities he/she wants to.

Another classical problem dealing with weighted graphs is to find a path between two edges that uses a set
of edges that has a minimal weight. Instead of weight we could also talk about ”cost” or ”length”, the weight
could be thought of as representing the length of edges, and thus we are interested in finding the shortest path
between two vertices.

The Dutch mathematician Edsger Dijkstra (1930-2002) found a way to do this and we will study his algo-
rithm which is of course named Dijkstra’s Algorithm.

We will give an analogy of the algorithm - the algorithm is about finding the shortest path between two
given vertices, we can call one vertex the starting vertexr and the other vertex (towards which we are headed)
can be called the finishing verter. In fact the algorithm proceeds in a way that will give the shortest path
between any vertice in the graph and the starting vertex, so which vertex we choose as finishing vertex is not
so important. The algorithm will proceed by labeling all the vertices in the graph and the label each vertex
will receive will determine the shortest path (along with it’s length) from the starting vertex to that vertex
which has the label. The course of the algorithm can be thought of as water rising in a vessel whose sides are
determined by the vertices and edges of the graph itself, with the starting vertex at the bottom, and water
coming in through the starting vertex. Water has this curios ability to always find the shortest path between
any two points. In Dijkstra’s algorithm, the water can be thought of as a pool that grows and eventually
engulfs all the vertices in the graph. We will illustrate this with an example.

Example: Consider the following weighted graph and find the shortest path between the vertex A and the
vertex Z:

So when we imagine water starting to flow in at A, we label that vertex with (—,0), signifying that it is "at
the bottom of the pool” and then we introduce the sets U = {A} and V = {B,C}. The set U will grow and
when a vertex gets into U it will get a label and the label will measure the distance to A along a shortest path.
Since A is at distance 0 from itself, A’s label will have the measure 0. The set V will vary and indicate those
vertices that are next to any vertex in U, in the beginning V' consists of the vertices B, C since they are next
to A. The general steps of Dijkstra’s algorithm are like this:

1. For every pair of elements u € U and v € V note the weight/distance of the edge uv.

2. Find the edge for which the distance/weight is the smallest and add the destination vertex v to U and
give v the label (u,d) where d is the distance/weight weight of the path from the starting vertex to v.

3. Repeat step 1 and 2 until all the vertices of the graph are contained in the set U. Then the labels will
specifiy the shortest paths to each and every vertex in the graph.

We will walk through these steps with the above graph. It is helpful to think of the set U as a growing pool
of water that step by step engulfs all the vertices of the graph.

Now we have U = {A}, and V = {B, C}. Note all distances between all pairs u,v where u is chosen from U
and v is chosen from V. There are only two combinations: (u,v) = (A, B) giving the distance/weight d = 4,



MEETING 14 - MORE GRAPH THEORY 5

and (u,v) = (A, C) givign the distance d = 6. Of these, 4 is smallest so we add B to U with the label (A,4).
The graph with the new label is shown below on the left:
B([_l,4) 7 D 5 G B_(A,4) 7 D 5 G

For the next step, we have A = {A,B} and V = {C, D}, and the different choices of (u,v) will then be
(u,v) = (A,C) = d =6, (u,v) = (B,C) = d =5, and (u,v) = (B,D) = d = 11. Of these choices, the
smallest distance/weight is d = 5 which corresponds to the choice of (u,v) = (B,C) so C gets the label (B,5)
and a pictorial representation of this is shown above to the right. The water has now engulfed A, B, C so that
U={A,B,C} and V ={D, F,E}. Now the set of pairs (u,v) will be (B,D) = d =11, (C,F) = d =11, and
(C,E) = d =T of which (C, E) gives the smallest d = 7, resulting in the addition of the label (C,7) to the
vertex F. The pictorial representation of this situation is shown below to the left:
B(A4) 7 D 5 G B(A,4) 7 D(B,11) 5 G

So now we have U = {A,B,C,E} and V = {D,F,H}. Now the choices of (u,v) are (B,D) = d = 11,
(C,F)=d=11, (E,F)=d=12, and (E,H) = d = 13. We now come to an interesting situation. We have
two candidates for the smallest value. If each of these candidates had common w’s or common v’s, we could
add either of them, but now both the first and the second components differ, so we can actually add both D
and F' to U with labels (B, 11) and (C, 11) respectively. That is illustrated above to the right. Again, consider
the analogy of a rising water level. Now U = {A,B,C,D,E,F} and V = {G, I, H}. The choices of (u,v) now
are (D,G) =d =16, (F,I)=d=13, (F,H) = d =17, and (E, H) = d = 13 again giving two more labels
I(F,13) and H(F,13). The situation is illustrated below on the left:
B(A,4) 7 D(B1II1) 5 G B(A,4) 7 D(B,11) 5 G(D,16)

H(E,13) H(E,13)

Now we are approaching the end, the water level has risen to engulf all the vertices A, B,C, D, E, F,I, H and
only G, Z are outside. We can now reach Z (the goal) which is expressed by Z being a member of the set
V. Indeed we have U = {A,B,C,D,E,F,1,H} and V = {G, Z}. The (u,v) pairs now are (D,G) = d = 16,
(I,G) =d=18 and (H,Z) = d = 17 giving the label G(D, 16) which is drawn in the figure above to the right.
Finally it is easy to find the last label for Z which will be (H,17). Following the labels back to A will then define
a shortest path between A and Z. And indeed, we could choose any vertex () in the whole graph and by follow-
ing the labels back to A it would indicate a shortest path between A and (). This is illustrated to the left below:

B(A4) 7 D(B,11) 5 G(D,16) B(A4) 7 D(B,11) 5 G(D,16)
, :
A(-0) < 3 AG),
6
3 ~ 2H,17)
2 —
EC7) ¢ ) EC7) 6 L

To the right we illustrate a slightly different situation, we have altered the weight of the edge GZ to 1 so that
a new shortest path appears. This is a shortest path also with the length 17 so it is a fully viable alternative
to the one we already found. Another example giving an entirely different shortest path would be if we would
have added the edge IZ of weight 1, try Dijkstra’s algorithm on this graph. It is showed below:



6 MEETING 14 - MORE GRAPH THEORY

We can now state Dijkstra’s Algorithm in full: To find a shortest path from vertex A to vertex Z in a weighted
graph, carry out the following procedure:

1. Assign to the vertex A the label (—,0) and form the set U = {A}.
2. Until Z is labeled of no further labels can be assigned, do the following:

(a) Form the set V' of all vertices adjacent to all the vertices of the set U. For each pair of vertices,
(u,v), where u € U and v € V, calculate the distances/weights from A to v based on the labels.
(b) Find the minimum value of all these distances/weights.
(c) Add the corresponding vertices (there may be more than one) to the set U and label them to
document the shortest paths so far to A.
If we cannot label vertices any more and we we have not yet reached the destination Z, then this means that
the graph is not connected and there is no path at all between A and Z, specifically then there cannot of course
be any shortest path between A and Z.



